November  2015, 14(6): 2431-2451. doi: 10.3934/cpaa.2015.14.2431

Regularity and nonexistence of solutions for a system involving the fractional Laplacian

1. 

School of Mathematics, Hunan University, Changsha, 410082, China

Received  March 2015 Revised  July 2015 Published  September 2015

We consider a system involving the fractional Laplacian \begin{eqnarray} \left\{ \begin{array}{ll} (-\Delta)^{\alpha_{1}/2}u=u^{p_{1}}v^{q_{1}} & \mbox{in}\ \mathbb{R}^N_+,\\ (-\Delta)^{\alpha_{2}/2}v=u^{p_{2}}v^{q_{2}} &\mbox{in}\ \mathbb{R}^N_+,\\ u=v=0,&\mbox{in}\ \mathbb{R}^N\backslash\mathbb{R}^N_+, \end{array} \right. \end{eqnarray} where $\alpha_{i}\in (0,2)$, $p_{i},q_{i}>0$, $i=1,2$. Based on the uniqueness of $\alpha$-harmonic function [9] on half space, the equivalence between (1) and integral equations \begin{eqnarray} \left\{ \begin{array}{ll} u(x)=C_{1}x_{N}^{\frac{\alpha_{1}}{2}}+\displaystyle\int_{\mathbb{R}_{+}^{N}}G^{1}_{\infty}(x,y)u^{p_{1}}(y)v^{q_{1}}(y)dy,\\ v(x)=C_{2}x_{N}^{\frac{\alpha_{2}}{2}}+\displaystyle\int_{\mathbb{R}_{+}^{N}}G^{2}_{\infty}(x,y)u^{p_{2}}(y)v^{q_{2}}(y)dy. \end{array} \right. \end{eqnarray} are derived. Based on this result we deal with integral equations (2) instead of (1) and obtain the regularity. Especially, by the method of moving planes in integral forms which is established by Chen-Li-Ou [12], we obtain the nonexistence of positive solutions of integral equations (2) under only local integrability assumptions.
Citation: De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431
References:
[1]

J. Betoin, Lévy Processes,, Cambridge Tracts in Mathematics, (1996).   Google Scholar

[2]

H. Berestycki and L. Nirenberg, On the method of moving planes and sliding method,, \emph{Bol. Soc. Brazil. Mat. }(N. S.), 22 (1991), 1.  doi: 10.1007/BF01244896.  Google Scholar

[3]

G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations in $R^N$ and $R_{+}^N$ through the method of moving plane,, \emph{Comm. PDE.}, 22 (1997), 1671.  doi: 10.1080/03605309708821315.  Google Scholar

[4]

K. Bogdan, The boundary Harnack principle for the fractional Laplacian,, \emph{Studia Math.}, 123 (1997), 43.   Google Scholar

[5]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates,, \emph{Ann. I. H. Poincar\'e-AN.}, 31 (2014), 23.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[6]

X. Cabré and J. Solà-Morales, Layer solutions in a half-space for boundary reactions,, \emph{Comm. Pure Appl. Math.}, 58 (2005), 1678.  doi: 10.1002/cpa.20093.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm. in PDE.}, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[8]

L. Cao and W. Chen, Liouville type theorems for poly-harmonic Navier problems,, \emph{Disc. Cont. Dyn. Sys.}, 33 (2013), 3937.  doi: 10.3934/dcds.2013.33.3937.  Google Scholar

[9]

W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space,, \emph{Advances in Mathematics}, 274 (2015), 167.  doi: 10.1016/j.aim.2014.12.013.  Google Scholar

[10]

W. Chen and C. Li, Regularity of solutions for a system of integral equation,, \emph{Comm. Pure Appl. Anal.}, 4 (2005), 1.   Google Scholar

[11]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations,, AIMS. Ser. Differ. Equ. Dyn. Syst., 4 (2010).   Google Scholar

[12]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[13]

W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev inequlaities and systems of integral equations,, \emph{Discrete Contin. Dyn. Syst.}, (2005), 164.   Google Scholar

[14]

R. Cont and P. Tankov, Financial Modelling With Jump Process,, Chapman and Hall/CRC Financial Mathematics Series, (2004).   Google Scholar

[15]

G. Duvaut and J.-L. Lions, Inequalities In Mechanics and Physics,, Springer-Verlag, (1976).   Google Scholar

[16]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, \emph{Adv. Math.}, 229 (2012), 2835.  doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[17]

P. Felmer and A. Quaas, Fundamental solutions and Liouville type properties for nonlinear integral operator,, \emph{Adv. Math.}, 226 (2011), 2712.  doi: 10.1016/j.aim.2010.09.023.  Google Scholar

[18]

M. Moustapha Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half space,, Available online at \emph{http://arxiv.org/abs/1309.7230}., ().   Google Scholar

[19]

M. Moustapha Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems,, \emph{J. Funct. Anal.}, 263 (2012), 2205.  doi: 10.1016/j.jfa.2012.06.018.  Google Scholar

[20]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, \emph{Phys. Rep.}, 339 (2000), 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[21]

E. Milakis and L. Silvestre, Regularity for the nonlinear Signorini problem,, \emph{Adv. Math.}, 217 (2008), 1301.  doi: 10.1016/j.aim.2007.08.009.  Google Scholar

[22]

A. Quaas and B. Sirakov, Existence and nonexistence results for fully nonlinear elliptic systems,, \emph{Indiana Univ. Math. J.}, 58 (2009), 751.  doi: 10.1512/iumj.2009.58.3501.  Google Scholar

[23]

A. Quaas and A. Xia, Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space,, \emph{Calc. Var. Partial Differential Equations}, 52 (2015), 641.  doi: 10.1007/s00526-014-0727-8.  Google Scholar

[24]

T. Kulczycki, Properties of Green function of symmetric stable processed,, \emph{Probability and Mathematical Statistics}, 17 (1997), 339.   Google Scholar

[25]

L. Silvestre, Regularity of the obstacle problem for the fractional power of the Laplace operator,, \emph{Comm. Pure Appl. Math.}, 60 (2007), 67.  doi: 10.1002/cpa.20153.  Google Scholar

[26]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result,, \emph{J. Funct. Anal.}, 256 (2009), 1842.  doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

show all references

References:
[1]

J. Betoin, Lévy Processes,, Cambridge Tracts in Mathematics, (1996).   Google Scholar

[2]

H. Berestycki and L. Nirenberg, On the method of moving planes and sliding method,, \emph{Bol. Soc. Brazil. Mat. }(N. S.), 22 (1991), 1.  doi: 10.1007/BF01244896.  Google Scholar

[3]

G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations in $R^N$ and $R_{+}^N$ through the method of moving plane,, \emph{Comm. PDE.}, 22 (1997), 1671.  doi: 10.1080/03605309708821315.  Google Scholar

[4]

K. Bogdan, The boundary Harnack principle for the fractional Laplacian,, \emph{Studia Math.}, 123 (1997), 43.   Google Scholar

[5]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates,, \emph{Ann. I. H. Poincar\'e-AN.}, 31 (2014), 23.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[6]

X. Cabré and J. Solà-Morales, Layer solutions in a half-space for boundary reactions,, \emph{Comm. Pure Appl. Math.}, 58 (2005), 1678.  doi: 10.1002/cpa.20093.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm. in PDE.}, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[8]

L. Cao and W. Chen, Liouville type theorems for poly-harmonic Navier problems,, \emph{Disc. Cont. Dyn. Sys.}, 33 (2013), 3937.  doi: 10.3934/dcds.2013.33.3937.  Google Scholar

[9]

W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space,, \emph{Advances in Mathematics}, 274 (2015), 167.  doi: 10.1016/j.aim.2014.12.013.  Google Scholar

[10]

W. Chen and C. Li, Regularity of solutions for a system of integral equation,, \emph{Comm. Pure Appl. Anal.}, 4 (2005), 1.   Google Scholar

[11]

W. Chen and C. Li, Methods on Nonlinear Elliptic Equations,, AIMS. Ser. Differ. Equ. Dyn. Syst., 4 (2010).   Google Scholar

[12]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[13]

W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev inequlaities and systems of integral equations,, \emph{Discrete Contin. Dyn. Syst.}, (2005), 164.   Google Scholar

[14]

R. Cont and P. Tankov, Financial Modelling With Jump Process,, Chapman and Hall/CRC Financial Mathematics Series, (2004).   Google Scholar

[15]

G. Duvaut and J.-L. Lions, Inequalities In Mechanics and Physics,, Springer-Verlag, (1976).   Google Scholar

[16]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space,, \emph{Adv. Math.}, 229 (2012), 2835.  doi: 10.1016/j.aim.2012.01.018.  Google Scholar

[17]

P. Felmer and A. Quaas, Fundamental solutions and Liouville type properties for nonlinear integral operator,, \emph{Adv. Math.}, 226 (2011), 2712.  doi: 10.1016/j.aim.2010.09.023.  Google Scholar

[18]

M. Moustapha Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half space,, Available online at \emph{http://arxiv.org/abs/1309.7230}., ().   Google Scholar

[19]

M. Moustapha Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems,, \emph{J. Funct. Anal.}, 263 (2012), 2205.  doi: 10.1016/j.jfa.2012.06.018.  Google Scholar

[20]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, \emph{Phys. Rep.}, 339 (2000), 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[21]

E. Milakis and L. Silvestre, Regularity for the nonlinear Signorini problem,, \emph{Adv. Math.}, 217 (2008), 1301.  doi: 10.1016/j.aim.2007.08.009.  Google Scholar

[22]

A. Quaas and B. Sirakov, Existence and nonexistence results for fully nonlinear elliptic systems,, \emph{Indiana Univ. Math. J.}, 58 (2009), 751.  doi: 10.1512/iumj.2009.58.3501.  Google Scholar

[23]

A. Quaas and A. Xia, Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space,, \emph{Calc. Var. Partial Differential Equations}, 52 (2015), 641.  doi: 10.1007/s00526-014-0727-8.  Google Scholar

[24]

T. Kulczycki, Properties of Green function of symmetric stable processed,, \emph{Probability and Mathematical Statistics}, 17 (1997), 339.   Google Scholar

[25]

L. Silvestre, Regularity of the obstacle problem for the fractional power of the Laplace operator,, \emph{Comm. Pure Appl. Math.}, 60 (2007), 67.  doi: 10.1002/cpa.20153.  Google Scholar

[26]

Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result,, \emph{J. Funct. Anal.}, 256 (2009), 1842.  doi: 10.1016/j.jfa.2009.01.020.  Google Scholar

[1]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[2]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[3]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[4]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[5]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[9]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[12]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[13]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[14]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[15]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[16]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[17]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[18]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[19]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[20]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]