November  2015, 14(6): 2487-2508. doi: 10.3934/cpaa.2015.14.2487

Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion

1. 

Department of Mathematics, Huazhong Normal University, Wuhan 430079

2. 

Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, USA

3. 

Department of Mathematics, Huazhong Normal University, Wuhan, 430079, China

Received  June 2015 Revised  June 2015 Published  September 2015

This paper is concerned with a type of quasilinear Schrödinger equations of the form \begin{eqnarray} -\Delta u+V(x)u-p\Delta(|u|^{2p})|u|^{2p-2}u=\lambda|u|^{q-2}u+|u|^{2p2^{*}-2}u, \end{eqnarray} where $\lambda>0, N\ge3, 4p < q < 2p2^*, 2^*=\frac{2N}{N-2}, 1< p < +\infty$. For any given $k \ge 0$, by using a change of variables and Nehari minimization, we obtain a sign-changing minimizer with $k$ nodes.
Citation: Yinbin Deng, Yi Li, Xiujuan Yan. Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2487-2508. doi: 10.3934/cpaa.2015.14.2487
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381.

[2]

S. Bae, H. O. Choi and D. H. Pahk, Existence of nodal solutions of nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect., A 137 (2007), 1135-1155. doi: 10.1017/S0308210505000727.

[3]

T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on $\R^N$, Arch. Ration. Mech. Anal., 124 (1993), 261-276. doi: 10.1007/BF00953069.

[4]

T. Bartsch and Z. Tang, Multibump solutions of nonlinear Schrodinger equations with steep potential well and indefinite potential, Discrete Contin. Dyn. Syst., 33, (2012), 7-26,

[5]

G. Bianchi, J. Chabrowski and A. Szulkin, On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent, Nonlinear Anal. TMA, 25 (1995), 41-59. doi: 10.1016/0362-546X(94)E0070-W.

[6]

João M. Bezerra do Ó, Olímpio H. Miyagaki and Sérgio H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744. doi: 10.1016/j.jde.2009.11.030.

[7]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550.

[8]

H. Brezis and E. Lieb, A relation between pointwise convergence of function and convergence of functional, Proc. Amer. Math. Soc., 88 (1983), 486-490. doi: 10.2307/2044999.

[9]

D. Cao and X. Zhu, On the existence and nodal character of semilinear elliptic equations, Acta. Math. Sci., 8 (1988), 345-359.

[10]

X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett., 70 (1993), 2082-2085.

[11]

G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Func. Anal., 69 (1986), 289-306. doi: 10.1016/0022-1236(86)90094-7.

[12]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal. TMA., 56 (2004), 213-226. doi: 10.1016/j.na.2003.09.008.

[13]

M. Conti, L. Merizzi and S. Terracini, Radial solutions of superlinear equations on $\R^N$. I. A global variational approach, Arch. Ration. Mech. Anal., 153 (2000), 291-316. doi: 10.1007/s002050050015.

[14]

A. De Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Comm. Math. Phys., 189 (1997), 73-105. doi: 10.1007/s002200050191.

[15]

Y. Deng, The existence and nodal character of solutions in $\R ^N$ for semilinear elliptic equations involving critical Sobolev exponents, Acta. Math. Sci., 9 (1989), 385-402.

[16]

Y. Deng, S. Peng and J. Wang, Infinitely many sign-changing solutions for quasilinear Schrödinger equations in $\R^N$, Commun. Math. Sci., 9 (2011), 859-878. doi: 10.4310/CMS.2011.v9.n3.a9.

[17]

Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent, Journal of Mathematical Physics, 54 (2013), 011504. doi: 10.1063/1.4774153.

[18]

Y. Deng and W. Shuai, Positive solutions for quasilinear Schrodinger equations with critical growth and potential vanishing at infinity, Commun. Pure Appl. Anal., 13 (2014), 2273-2287. doi: 10.3934/cpaa.2014.13.2273.

[19]

P. Felmer and C. Torres, Radial symmetry of ground states for a regional fractional nonlinear Schrodinger equation, Commun. Pure Appl. Anal., 13 (2014), 2395-2406. doi: 10.3934/cpaa.2014.13.2395.

[20]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-New York, 1998.

[21]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267.

[22]

Xiang-Qing Liu, Jia-Quan Liu and Zhi Qiang Wang, Quasilinear elliptic equations with critical growth via pertubation method, Journal Differential Equations, 254 (2013), 102-124 doi: 10.1016/j.jde.2012.09.006.

[23]

E. Laedke, K. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769. doi: 10.1063/1.525675.

[24]

J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I., Proc. Amer. Math. Soc., 131 (2003), 441-448. doi: 10.1090/S0002-9939-02-06783-7.

[25]

J. Liu and Z. Wang, Symmetric solutions to a modified nonlinear Schrödinger equation, Nonlinearity, 21 (2008), 121-133. doi: 10.1088/0951-7715/21/1/007.

[26]

J. Liu, Y. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II, J. Differential Equations, 187 (2003), 473-493. doi: 10.1016/S0022-0396(02)00064-5.

[27]

J. Liu, Y. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879-901. doi: 10.1081/PDE-120037335.

[28]

X. Q. Liu and J. Q. Liu, Quasilinear elliptic equations via perturbation meathod, Proc. Amer. Math. Soc. 141 (2013), 253-263. doi: 10.1090/S0002-9939-2012-11293-6.

[29]

C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Un. Mat. Ital., 3 (1940), 5-7.

[30]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $\R^N$, J. Differential Equations, 229 (2006), 570-587. doi: 10.1016/j.jde.2006.07.001.

[31]

A. Moameni, Soliton solutions for quasilinear Schrodinger equations involving supercritical exponent in $\R^N$, Commun. Pure Appl. Anal., 7 (2007), 89-105. doi: 10.3934/cpaa.2008.7.89.

[32]

Z. Nehari, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math., 105 (1961), 141-175.

[33]

M. Poppenberg, K. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344. doi: 10.1007/s005260100105.

[34]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689.

[35]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrodinger equations, Nonlinear Anal. TMA., 80 (2013), 194-201. doi: 10.1016/j.na.2012.10.005.

[36]

Marco A. S. Souto and Sergio H. M. Soares, Ground state solutions for quasilinear stationary Schrodinger equations with critical growth, Commun. Pure Appl. Anal., 12 (2012), 99-116. doi: 10.3934/cpaa.2013.12.99.

[37]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.

[38]

T. Weth, Energy bounds for entire nodal solutions of autonomous superlinear equations, Calc. Var. Partial Differential Equations, 27 (2006), 421-437. doi: 10.1007/s00526-006-0015-3.

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381.

[2]

S. Bae, H. O. Choi and D. H. Pahk, Existence of nodal solutions of nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect., A 137 (2007), 1135-1155. doi: 10.1017/S0308210505000727.

[3]

T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on $\R^N$, Arch. Ration. Mech. Anal., 124 (1993), 261-276. doi: 10.1007/BF00953069.

[4]

T. Bartsch and Z. Tang, Multibump solutions of nonlinear Schrodinger equations with steep potential well and indefinite potential, Discrete Contin. Dyn. Syst., 33, (2012), 7-26,

[5]

G. Bianchi, J. Chabrowski and A. Szulkin, On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent, Nonlinear Anal. TMA, 25 (1995), 41-59. doi: 10.1016/0362-546X(94)E0070-W.

[6]

João M. Bezerra do Ó, Olímpio H. Miyagaki and Sérgio H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744. doi: 10.1016/j.jde.2009.11.030.

[7]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550.

[8]

H. Brezis and E. Lieb, A relation between pointwise convergence of function and convergence of functional, Proc. Amer. Math. Soc., 88 (1983), 486-490. doi: 10.2307/2044999.

[9]

D. Cao and X. Zhu, On the existence and nodal character of semilinear elliptic equations, Acta. Math. Sci., 8 (1988), 345-359.

[10]

X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett., 70 (1993), 2082-2085.

[11]

G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Func. Anal., 69 (1986), 289-306. doi: 10.1016/0022-1236(86)90094-7.

[12]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal. TMA., 56 (2004), 213-226. doi: 10.1016/j.na.2003.09.008.

[13]

M. Conti, L. Merizzi and S. Terracini, Radial solutions of superlinear equations on $\R^N$. I. A global variational approach, Arch. Ration. Mech. Anal., 153 (2000), 291-316. doi: 10.1007/s002050050015.

[14]

A. De Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Comm. Math. Phys., 189 (1997), 73-105. doi: 10.1007/s002200050191.

[15]

Y. Deng, The existence and nodal character of solutions in $\R ^N$ for semilinear elliptic equations involving critical Sobolev exponents, Acta. Math. Sci., 9 (1989), 385-402.

[16]

Y. Deng, S. Peng and J. Wang, Infinitely many sign-changing solutions for quasilinear Schrödinger equations in $\R^N$, Commun. Math. Sci., 9 (2011), 859-878. doi: 10.4310/CMS.2011.v9.n3.a9.

[17]

Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent, Journal of Mathematical Physics, 54 (2013), 011504. doi: 10.1063/1.4774153.

[18]

Y. Deng and W. Shuai, Positive solutions for quasilinear Schrodinger equations with critical growth and potential vanishing at infinity, Commun. Pure Appl. Anal., 13 (2014), 2273-2287. doi: 10.3934/cpaa.2014.13.2273.

[19]

P. Felmer and C. Torres, Radial symmetry of ground states for a regional fractional nonlinear Schrodinger equation, Commun. Pure Appl. Anal., 13 (2014), 2395-2406. doi: 10.3934/cpaa.2014.13.2395.

[20]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-New York, 1998.

[21]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267.

[22]

Xiang-Qing Liu, Jia-Quan Liu and Zhi Qiang Wang, Quasilinear elliptic equations with critical growth via pertubation method, Journal Differential Equations, 254 (2013), 102-124 doi: 10.1016/j.jde.2012.09.006.

[23]

E. Laedke, K. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769. doi: 10.1063/1.525675.

[24]

J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I., Proc. Amer. Math. Soc., 131 (2003), 441-448. doi: 10.1090/S0002-9939-02-06783-7.

[25]

J. Liu and Z. Wang, Symmetric solutions to a modified nonlinear Schrödinger equation, Nonlinearity, 21 (2008), 121-133. doi: 10.1088/0951-7715/21/1/007.

[26]

J. Liu, Y. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II, J. Differential Equations, 187 (2003), 473-493. doi: 10.1016/S0022-0396(02)00064-5.

[27]

J. Liu, Y. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879-901. doi: 10.1081/PDE-120037335.

[28]

X. Q. Liu and J. Q. Liu, Quasilinear elliptic equations via perturbation meathod, Proc. Amer. Math. Soc. 141 (2013), 253-263. doi: 10.1090/S0002-9939-2012-11293-6.

[29]

C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Un. Mat. Ital., 3 (1940), 5-7.

[30]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $\R^N$, J. Differential Equations, 229 (2006), 570-587. doi: 10.1016/j.jde.2006.07.001.

[31]

A. Moameni, Soliton solutions for quasilinear Schrodinger equations involving supercritical exponent in $\R^N$, Commun. Pure Appl. Anal., 7 (2007), 89-105. doi: 10.3934/cpaa.2008.7.89.

[32]

Z. Nehari, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math., 105 (1961), 141-175.

[33]

M. Poppenberg, K. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344. doi: 10.1007/s005260100105.

[34]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689.

[35]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrodinger equations, Nonlinear Anal. TMA., 80 (2013), 194-201. doi: 10.1016/j.na.2012.10.005.

[36]

Marco A. S. Souto and Sergio H. M. Soares, Ground state solutions for quasilinear stationary Schrodinger equations with critical growth, Commun. Pure Appl. Anal., 12 (2012), 99-116. doi: 10.3934/cpaa.2013.12.99.

[37]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.

[38]

T. Weth, Energy bounds for entire nodal solutions of autonomous superlinear equations, Calc. Var. Partial Differential Equations, 27 (2006), 421-437. doi: 10.1007/s00526-006-0015-3.

[1]

Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004

[2]

Zuji Guo. Nodal solutions for nonlinear Schrödinger equations with decaying potential. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1125-1138. doi: 10.3934/cpaa.2016.15.1125

[3]

Monica Lazzo, Paul G. Schmidt. Nodal properties of radial solutions for a class of polyharmonic equations. Conference Publications, 2007, 2007 (Special) : 634-643. doi: 10.3934/proc.2007.2007.634

[4]

Jianqing Chen, Qian Zhang. Multiple non-radially symmetrical nodal solutions for the Schrödinger system with positive quasilinear term. Communications on Pure and Applied Analysis, 2022, 21 (2) : 669-686. doi: 10.3934/cpaa.2021193

[5]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[6]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[7]

Xiang-Dong Fang. Positive solutions for quasilinear Schrödinger equations in $\mathbb{R}^N$. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1603-1615. doi: 10.3934/cpaa.2017077

[8]

Edcarlos D. Silva, Jefferson S. Silva. Multiplicity of solutions for critical quasilinear Schrödinger equations using a linking structure. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5441-5470. doi: 10.3934/dcds.2020234

[9]

João Marcos do Ó, Abbas Moameni. Solutions for singular quasilinear Schrödinger equations with one parameter. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1011-1023. doi: 10.3934/cpaa.2010.9.1011

[10]

Guofa Li, Yisheng Huang. Positive solutions for critical quasilinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021214

[11]

Haiyan Wang. Positive radial solutions for quasilinear equations in the annulus. Conference Publications, 2005, 2005 (Special) : 878-885. doi: 10.3934/proc.2005.2005.878

[12]

Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921

[13]

Dumitru Motreanu, Viorica V. Motreanu, Abdelkrim Moussaoui. Location of Nodal solutions for quasilinear elliptic equations with gradient dependence. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 293-307. doi: 10.3934/dcdss.2018016

[14]

Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597

[15]

Jiabao Su, Rushun Tian. Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Communications on Pure and Applied Analysis, 2010, 9 (4) : 885-904. doi: 10.3934/cpaa.2010.9.885

[16]

Yinbin Deng, Wei Shuai. Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2273-2287. doi: 10.3934/cpaa.2014.13.2273

[17]

Jianhua Chen, Xianhua Tang, Bitao Cheng. Existence of ground state solutions for a class of quasilinear Schrödinger equations with general critical nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 493-517. doi: 10.3934/cpaa.2019025

[18]

Hongxia Shi, Haibo Chen. Infinitely many solutions for generalized quasilinear Schrödinger equations with sign-changing potential. Communications on Pure and Applied Analysis, 2018, 17 (1) : 53-66. doi: 10.3934/cpaa.2018004

[19]

Yi He, Gongbao Li. Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Sobolev exponents. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 731-762. doi: 10.3934/dcds.2016.36.731

[20]

Yanfang Xue, Chunlei Tang. Ground state solutions for asymptotically periodic quasilinear Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1121-1145. doi: 10.3934/cpaa.2018054

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (201)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]