November  2015, 14(6): 2487-2508. doi: 10.3934/cpaa.2015.14.2487

Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion

1. 

Department of Mathematics, Huazhong Normal University, Wuhan 430079

2. 

Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, USA

3. 

Department of Mathematics, Huazhong Normal University, Wuhan, 430079, China

Received  June 2015 Revised  June 2015 Published  September 2015

This paper is concerned with a type of quasilinear Schrödinger equations of the form \begin{eqnarray} -\Delta u+V(x)u-p\Delta(|u|^{2p})|u|^{2p-2}u=\lambda|u|^{q-2}u+|u|^{2p2^{*}-2}u, \end{eqnarray} where $\lambda>0, N\ge3, 4p < q < 2p2^*, 2^*=\frac{2N}{N-2}, 1< p < +\infty$. For any given $k \ge 0$, by using a change of variables and Nehari minimization, we obtain a sign-changing minimizer with $k$ nodes.
Citation: Yinbin Deng, Yi Li, Xiujuan Yan. Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2487-2508. doi: 10.3934/cpaa.2015.14.2487
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Func. Anal., 14 (1973), 349.   Google Scholar

[2]

S. Bae, H. O. Choi and D. H. Pahk, Existence of nodal solutions of nonlinear elliptic equations,, \emph{Proc. Roy. Soc. Edinburgh Sect., A 137 (2007), 1135.  doi: 10.1017/S0308210505000727.  Google Scholar

[3]

T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on $\R^N$,, \emph{Arch. Ration. Mech. Anal., 124 (1993), 261.  doi: 10.1007/BF00953069.  Google Scholar

[4]

T. Bartsch and Z. Tang, Multibump solutions of nonlinear Schrodinger equations with steep potential well and indefinite potential,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2012), 7.   Google Scholar

[5]

G. Bianchi, J. Chabrowski and A. Szulkin, On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent,, \emph{Nonlinear Anal. TMA, 25 (1995), 41.  doi: 10.1016/0362-546X(94)E0070-W.  Google Scholar

[6]

João M. Bezerra do Ó, Olímpio H. Miyagaki and Sérgio H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth,, \emph{J. Differential Equations, 248 (2010), 722.  doi: 10.1016/j.jde.2009.11.030.  Google Scholar

[7]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma,, \emph{Phys. Fluids B, 5 (1993), 3539.   Google Scholar

[8]

H. Brezis and E. Lieb, A relation between pointwise convergence of function and convergence of functional,, \emph{Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.2307/2044999.  Google Scholar

[9]

D. Cao and X. Zhu, On the existence and nodal character of semilinear elliptic equations,, \emph{Acta. Math. Sci., 8 (1988), 345.   Google Scholar

[10]

X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma,, \emph{Phys. Rev. Lett., 70 (1993), 2082.   Google Scholar

[11]

G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents,, \emph{J. Func. Anal., 69 (1986), 289.  doi: 10.1016/0022-1236(86)90094-7.  Google Scholar

[12]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach,, \emph{Nonlinear Anal. TMA., 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[13]

M. Conti, L. Merizzi and S. Terracini, Radial solutions of superlinear equations on $\R^N$. I. A global variational approach,, \emph{Arch. Ration. Mech. Anal., 153 (2000), 291.  doi: 10.1007/s002050050015.  Google Scholar

[14]

A. De Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation,, \emph{Comm. Math. Phys., 189 (1997), 73.  doi: 10.1007/s002200050191.  Google Scholar

[15]

Y. Deng, The existence and nodal character of solutions in $\R ^N$ for semilinear elliptic equations involving critical Sobolev exponents,, \emph{Acta. Math. Sci., 9 (1989), 385.   Google Scholar

[16]

Y. Deng, S. Peng and J. Wang, Infinitely many sign-changing solutions for quasilinear Schrödinger equations in $\R^N$,, \emph{Commun. Math. Sci., 9 (2011), 859.  doi: 10.4310/CMS.2011.v9.n3.a9.  Google Scholar

[17]

Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent,, \emph{Journal of Mathematical Physics, 54 (2013).  doi: 10.1063/1.4774153.  Google Scholar

[18]

Y. Deng and W. Shuai, Positive solutions for quasilinear Schrodinger equations with critical growth and potential vanishing at infinity,, \emph{Commun. Pure Appl. Anal.}, 13 (2014), 2273.  doi: 10.3934/cpaa.2014.13.2273.  Google Scholar

[19]

P. Felmer and C. Torres, Radial symmetry of ground states for a regional fractional nonlinear Schrodinger equation,, \emph{Commun. Pure Appl. Anal.}, 13 (2014), 2395.  doi: 10.3934/cpaa.2014.13.2395.  Google Scholar

[20]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, {Springer-Verlag, (1998).   Google Scholar

[21]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, \emph{J. Phys. Soc. Japan, 50 (1981), 3262.   Google Scholar

[22]

Xiang-Qing Liu, Jia-Quan Liu and Zhi Qiang Wang, Quasilinear elliptic equations with critical growth via pertubation method,, \emph{Journal Differential Equations, 254 (2013), 102.  doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[23]

E. Laedke, K. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions,, \emph{J. Math. Phys., 24 (1983), 2764.  doi: 10.1063/1.525675.  Google Scholar

[24]

J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I.,, \emph{Proc. Amer. Math. Soc., 131 (2003), 441.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[25]

J. Liu and Z. Wang, Symmetric solutions to a modified nonlinear Schrödinger equation,, \emph{Nonlinearity, 21 (2008), 121.  doi: 10.1088/0951-7715/21/1/007.  Google Scholar

[26]

J. Liu, Y. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II,, \emph{J. Differential Equations, 187 (2003), 473.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[27]

J. Liu, Y. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, \emph{Comm. Partial Differential Equations, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[28]

X. Q. Liu and J. Q. Liu, Quasilinear elliptic equations via perturbation meathod,, \emph{Proc. Amer. Math. Soc.} \textbf{141} (2013), 141 (2013), 253.  doi: 10.1090/S0002-9939-2012-11293-6.  Google Scholar

[29]

C. Miranda, Un'osservazione su un teorema di Brouwer,, \emph{Boll. Un. Mat. Ital., 3 (1940), 5.   Google Scholar

[30]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $\R^N$,, \emph{J. Differential Equations, 229 (2006), 570.  doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[31]

A. Moameni, Soliton solutions for quasilinear Schrodinger equations involving supercritical exponent in $\R^N$,, \emph{Commun. Pure Appl. Anal., 7 (2007), 89.  doi: 10.3934/cpaa.2008.7.89.  Google Scholar

[32]

Z. Nehari, Characteristic values associated with a class of non-linear second-order differential equations,, \emph{Acta Math., 105 (1961), 141.   Google Scholar

[33]

M. Poppenberg, K. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, \emph{Calc. Var. Partial Differential Equations, 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[34]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions,, \emph{Phys. Rev. E, 50 (1994), 687.   Google Scholar

[35]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrodinger equations,, \emph{Nonlinear Anal. TMA., 80 (2013), 194.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[36]

Marco A. S. Souto and Sergio H. M. Soares, Ground state solutions for quasilinear stationary Schrodinger equations with critical growth,, \emph{Commun. Pure Appl. Anal.}, 12 (2012), 99.  doi: 10.3934/cpaa.2013.12.99.  Google Scholar

[37]

W. A. Strauss, Existence of solitary waves in higher dimensions,, \emph{Comm. Math. Phys., 55 (1977), 149.   Google Scholar

[38]

T. Weth, Energy bounds for entire nodal solutions of autonomous superlinear equations,, \emph{Calc. Var. Partial Differential Equations, 27 (2006), 421.  doi: 10.1007/s00526-006-0015-3.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Func. Anal., 14 (1973), 349.   Google Scholar

[2]

S. Bae, H. O. Choi and D. H. Pahk, Existence of nodal solutions of nonlinear elliptic equations,, \emph{Proc. Roy. Soc. Edinburgh Sect., A 137 (2007), 1135.  doi: 10.1017/S0308210505000727.  Google Scholar

[3]

T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on $\R^N$,, \emph{Arch. Ration. Mech. Anal., 124 (1993), 261.  doi: 10.1007/BF00953069.  Google Scholar

[4]

T. Bartsch and Z. Tang, Multibump solutions of nonlinear Schrodinger equations with steep potential well and indefinite potential,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2012), 7.   Google Scholar

[5]

G. Bianchi, J. Chabrowski and A. Szulkin, On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent,, \emph{Nonlinear Anal. TMA, 25 (1995), 41.  doi: 10.1016/0362-546X(94)E0070-W.  Google Scholar

[6]

João M. Bezerra do Ó, Olímpio H. Miyagaki and Sérgio H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth,, \emph{J. Differential Equations, 248 (2010), 722.  doi: 10.1016/j.jde.2009.11.030.  Google Scholar

[7]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma,, \emph{Phys. Fluids B, 5 (1993), 3539.   Google Scholar

[8]

H. Brezis and E. Lieb, A relation between pointwise convergence of function and convergence of functional,, \emph{Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.2307/2044999.  Google Scholar

[9]

D. Cao and X. Zhu, On the existence and nodal character of semilinear elliptic equations,, \emph{Acta. Math. Sci., 8 (1988), 345.   Google Scholar

[10]

X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma,, \emph{Phys. Rev. Lett., 70 (1993), 2082.   Google Scholar

[11]

G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents,, \emph{J. Func. Anal., 69 (1986), 289.  doi: 10.1016/0022-1236(86)90094-7.  Google Scholar

[12]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach,, \emph{Nonlinear Anal. TMA., 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[13]

M. Conti, L. Merizzi and S. Terracini, Radial solutions of superlinear equations on $\R^N$. I. A global variational approach,, \emph{Arch. Ration. Mech. Anal., 153 (2000), 291.  doi: 10.1007/s002050050015.  Google Scholar

[14]

A. De Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation,, \emph{Comm. Math. Phys., 189 (1997), 73.  doi: 10.1007/s002200050191.  Google Scholar

[15]

Y. Deng, The existence and nodal character of solutions in $\R ^N$ for semilinear elliptic equations involving critical Sobolev exponents,, \emph{Acta. Math. Sci., 9 (1989), 385.   Google Scholar

[16]

Y. Deng, S. Peng and J. Wang, Infinitely many sign-changing solutions for quasilinear Schrödinger equations in $\R^N$,, \emph{Commun. Math. Sci., 9 (2011), 859.  doi: 10.4310/CMS.2011.v9.n3.a9.  Google Scholar

[17]

Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent,, \emph{Journal of Mathematical Physics, 54 (2013).  doi: 10.1063/1.4774153.  Google Scholar

[18]

Y. Deng and W. Shuai, Positive solutions for quasilinear Schrodinger equations with critical growth and potential vanishing at infinity,, \emph{Commun. Pure Appl. Anal.}, 13 (2014), 2273.  doi: 10.3934/cpaa.2014.13.2273.  Google Scholar

[19]

P. Felmer and C. Torres, Radial symmetry of ground states for a regional fractional nonlinear Schrodinger equation,, \emph{Commun. Pure Appl. Anal.}, 13 (2014), 2395.  doi: 10.3934/cpaa.2014.13.2395.  Google Scholar

[20]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, {Springer-Verlag, (1998).   Google Scholar

[21]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, \emph{J. Phys. Soc. Japan, 50 (1981), 3262.   Google Scholar

[22]

Xiang-Qing Liu, Jia-Quan Liu and Zhi Qiang Wang, Quasilinear elliptic equations with critical growth via pertubation method,, \emph{Journal Differential Equations, 254 (2013), 102.  doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[23]

E. Laedke, K. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions,, \emph{J. Math. Phys., 24 (1983), 2764.  doi: 10.1063/1.525675.  Google Scholar

[24]

J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I.,, \emph{Proc. Amer. Math. Soc., 131 (2003), 441.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[25]

J. Liu and Z. Wang, Symmetric solutions to a modified nonlinear Schrödinger equation,, \emph{Nonlinearity, 21 (2008), 121.  doi: 10.1088/0951-7715/21/1/007.  Google Scholar

[26]

J. Liu, Y. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II,, \emph{J. Differential Equations, 187 (2003), 473.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[27]

J. Liu, Y. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, \emph{Comm. Partial Differential Equations, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[28]

X. Q. Liu and J. Q. Liu, Quasilinear elliptic equations via perturbation meathod,, \emph{Proc. Amer. Math. Soc.} \textbf{141} (2013), 141 (2013), 253.  doi: 10.1090/S0002-9939-2012-11293-6.  Google Scholar

[29]

C. Miranda, Un'osservazione su un teorema di Brouwer,, \emph{Boll. Un. Mat. Ital., 3 (1940), 5.   Google Scholar

[30]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $\R^N$,, \emph{J. Differential Equations, 229 (2006), 570.  doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[31]

A. Moameni, Soliton solutions for quasilinear Schrodinger equations involving supercritical exponent in $\R^N$,, \emph{Commun. Pure Appl. Anal., 7 (2007), 89.  doi: 10.3934/cpaa.2008.7.89.  Google Scholar

[32]

Z. Nehari, Characteristic values associated with a class of non-linear second-order differential equations,, \emph{Acta Math., 105 (1961), 141.   Google Scholar

[33]

M. Poppenberg, K. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, \emph{Calc. Var. Partial Differential Equations, 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[34]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions,, \emph{Phys. Rev. E, 50 (1994), 687.   Google Scholar

[35]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrodinger equations,, \emph{Nonlinear Anal. TMA., 80 (2013), 194.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[36]

Marco A. S. Souto and Sergio H. M. Soares, Ground state solutions for quasilinear stationary Schrodinger equations with critical growth,, \emph{Commun. Pure Appl. Anal.}, 12 (2012), 99.  doi: 10.3934/cpaa.2013.12.99.  Google Scholar

[37]

W. A. Strauss, Existence of solitary waves in higher dimensions,, \emph{Comm. Math. Phys., 55 (1977), 149.   Google Scholar

[38]

T. Weth, Energy bounds for entire nodal solutions of autonomous superlinear equations,, \emph{Calc. Var. Partial Differential Equations, 27 (2006), 421.  doi: 10.1007/s00526-006-0015-3.  Google Scholar

[1]

Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004

[2]

Zuji Guo. Nodal solutions for nonlinear Schrödinger equations with decaying potential. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1125-1138. doi: 10.3934/cpaa.2016.15.1125

[3]

Monica Lazzo, Paul G. Schmidt. Nodal properties of radial solutions for a class of polyharmonic equations. Conference Publications, 2007, 2007 (Special) : 634-643. doi: 10.3934/proc.2007.2007.634

[4]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[5]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[6]

Xiang-Dong Fang. Positive solutions for quasilinear Schrödinger equations in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1603-1615. doi: 10.3934/cpaa.2017077

[7]

João Marcos do Ó, Abbas Moameni. Solutions for singular quasilinear Schrödinger equations with one parameter. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1011-1023. doi: 10.3934/cpaa.2010.9.1011

[8]

Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921

[9]

Haiyan Wang. Positive radial solutions for quasilinear equations in the annulus. Conference Publications, 2005, 2005 (Special) : 878-885. doi: 10.3934/proc.2005.2005.878

[10]

Dumitru Motreanu, Viorica V. Motreanu, Abdelkrim Moussaoui. Location of Nodal solutions for quasilinear elliptic equations with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 293-307. doi: 10.3934/dcdss.2018016

[11]

Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597

[12]

Jiabao Su, Rushun Tian. Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 885-904. doi: 10.3934/cpaa.2010.9.885

[13]

Yinbin Deng, Wei Shuai. Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2273-2287. doi: 10.3934/cpaa.2014.13.2273

[14]

Jianhua Chen, Xianhua Tang, Bitao Cheng. Existence of ground state solutions for a class of quasilinear Schrödinger equations with general critical nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 493-517. doi: 10.3934/cpaa.2019025

[15]

Hongxia Shi, Haibo Chen. Infinitely many solutions for generalized quasilinear Schrödinger equations with sign-changing potential. Communications on Pure & Applied Analysis, 2018, 17 (1) : 53-66. doi: 10.3934/cpaa.2018004

[16]

Yi He, Gongbao Li. Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Sobolev exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 731-762. doi: 10.3934/dcds.2016.36.731

[17]

Yanfang Xue, Chunlei Tang. Ground state solutions for asymptotically periodic quasilinear Schrödinger equations with critical growth. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1121-1145. doi: 10.3934/cpaa.2018054

[18]

Abbas Moameni. Soliton solutions for quasilinear Schrödinger equations involving supercritical exponent in $\mathbb R^N$. Communications on Pure & Applied Analysis, 2008, 7 (1) : 89-105. doi: 10.3934/cpaa.2008.7.89

[19]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[20]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]