Citation: |
[1] |
N. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equation, Commun. Partial. Diff. Eqns., 4 (1979), 827-868.doi: 10.1080/03605307908820113. |
[2] |
L. J. S. Allen, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.doi: 10.3934/dcds.2008.21.1. |
[3] |
R. M. Anderson and R. M. May, The population dynamics of microparasites and their invertebrate hosts, Phil. Trans. Royal Soc. London B, Biol. Sci., 291 (1981), 451-524. |
[4] |
V. Capasso and L. Maddalena, Convergence to equilibrium states for a reactiondiffusion system modelling the spatial spread of a class of bacterial and viral diseases, J. Math. Biol., 13 (1981), 173-184.doi: 10.1007/BF00275212. |
[5] |
V. Capasso and R. E. Wilson, Analysis of a reactiondiffusion system modelling manenvironmentman epidemics, SIAM J. Appl. Math., 57 (1997), 327-346.doi: 10.1137/S0036139995284681. |
[6] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Func. Anal., 8 (1971), 321-340. |
[7] |
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1988.doi: 10.1007/978-3-662-00547-7. |
[8] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in the models for infectious disease in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.doi: 10.1007/BF00178324. |
[9] |
G. Dwyer, Density Dependence and Spatial Structure in the Dynamics of Insect Pathogens, The American Naturalist, 143 (1994), 533-562. |
[10] |
Y. Du and J. Shi, Spatially heterogeneous predator-prey model with protect zone for prey, J. Diff. Eqns., 229 (2006), 63-91.doi: 10.1016/j.jde.2006.01.013. |
[11] |
Y. Du and J. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Am. Math. Soc., 359 (2007), 4557-4593.doi: 10.1090/S0002-9947-07-04262-6. |
[12] |
Z. M. Guo, F.-B. Wang and X. Zou, Threshold dynamics of an infective disease model with a fixed latent period and non-local infections, J. Math. Biol., 65 (2012), 1387-1410.doi: 10.1007/s00285-011-0500-y. |
[13] |
J. Hale, Asymptotic behavior of dissipative systems, American Mathematical Society Providence, RI, 1988. |
[14] |
S. B. Hsu, J. Jiang and F. B. Wang, On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat, J. Diff. Eqns., 248 (2010), 2470-2496.doi: 10.1016/j.jde.2009.12.014. |
[15] |
S. B. Hsu, F. B. Wang and X.-Q. Zhao, Dynamics of a periodically pulsed bio-reactor model with a hydraulic storage zone, Jour. Dyna. Diff. Equa., 23 (2011), 817-842.doi: 10.1007/s10884-011-9224-3. |
[16] |
S. B. Hsu, F. B. Wang and X.-Q. Zhao, Global dynamics of zooplankton and harmful algae in flowing habitats, J. Diff. Eqns., 255 (2013), 265-297.doi: 10.1016/j.jde.2013.04.006. |
[17] |
D. Le, Dissipativity and global attractors for a class of quasilinear parabolic systems, Commun. Partial. Diff. Eqns., 22 (1997), 413-433.doi: 10.1080/03605309708821269. |
[18] |
J. Li and X. Zou, Modeling spatial spread of infectious diseases with a fixed latent period in a spatially continuous domain, Bull. Math. Biol., 71 (2009), 2048-2079.doi: 10.1007/s11538-009-9457-z. |
[19] |
R. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.doi: 10.2307/2001590. |
[20] |
P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal, 37 (2005), 251-275.doi: 10.1137/S0036141003439173. |
[21] |
R. D. Nussbaum, Eigenvectors of nonlinear positive operator and the linear Krein-Rutman theorem, in: E. Fadell, G. Fournier (Eds.), Fixed Point Theory, Lecture Notes in Mathematics, Springer, New York/Berlin, 886 (1981), 309-331. |
[22] |
W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.doi: 10.1137/1.9781611971972. |
[23] |
A. Pazy, Semigroups of Linear Operators and Application to Partial Differential Equations, Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4612-5561-1. |
[24] |
R. Peng, Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. I., J. Diff. Equa., 247 (2009), 1096-1119.doi: 10.1016/j.jde.2009.05.002. |
[25] |
R. Peng and F.-Q. Yi, Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement, Phys. D, 259 (2013), 8-25.doi: 10.1016/j.physd.2013.05.006. |
[26] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984doi: 10.1007/978-1-4612-5282-5. |
[27] |
Junping Shi, Persistence and bifurcation of degenerate solutions, Jour. Funct. Anal., 169 (1999), 494-531.doi: 10.1006/jfan.1999.3483. |
[28] |
J.-P. Shi and X.-F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Diff. Equa., 246 (2009), 2788-2812. |
[29] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs 41, American Mathematical Society, Providence, RI, 1995. |
[30] |
H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.doi: 10.1016/S0362-546X(01)00678-2. |
[31] |
H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.doi: 10.1007/BF00173267. |
[32] |
H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM, J. Appl. Math., 70 (2009), 188-211.doi: 10.1137/080732870. |
[33] |
P. van den Driessche and James Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6. |
[34] |
N. K. Vaidya and F.-B. Wang and X. Zou, Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment, Disc. Conti. Dynam Syst. B, 17 (2012), 2829-2848.doi: 10.3934/dcdsb.2012.17.2829. |
[35] |
F. B. Wang, A system of partial differential equations modeling the competition for two complementary resources in flowing habitats, J. Diff. Eqns., 249 (2010), 2866-2888.doi: 10.1016/j.jde.2010.07.031. |
[36] |
W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.doi: 10.1137/090775890. |
[37] |
W. Wang and X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Applied Dynamical Systems, 11 (2012), 1652-1673.doi: 10.1137/120872942. |
[38] |
X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003.doi: 10.1007/978-0-387-21761-1. |