January  2015, 14(1): 285-311. doi: 10.3934/cpaa.2015.14.285

Global gradient estimates in elliptic problems under minimal data and domain regularity

1. 

Dipartimento di Matematica "U.Dini", Università di Firenze, Piazza Ghiberti 27, 50122 Firenze

2. 

Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden

Received  February 2014 Revised  March 2014 Published  September 2014

This is a survey of some recent contributions by the authors on global integrability properties of the gradient of solutions to boundary value problems for nonlinear elliptic equations in divergence form. Minimal assumptions on the regularity of the ground domain and of the prescribed data are pursued.
Citation: Andrea Cianchi, Vladimir Maz'ya. Global gradient estimates in elliptic problems under minimal data and domain regularity. Communications on Pure & Applied Analysis, 2015, 14 (1) : 285-311. doi: 10.3934/cpaa.2015.14.285
References:
[1]

A. Alvino, A. Cianchi, V. Maz'ya and A. Mercaldo, Well-posed elliptic Neumann problems involving irregular data and domains,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 27 (2010), 1017.  doi: 10.1016/j.anihpc.2010.01.010.  Google Scholar

[2]

A. Alvino, V. Ferone and G.Trombetti, Estimates for the gradient of solutions of nonlinear elliptic equations with $L^1$ data,, \emph{Ann. Mat. Pura Appl.}, 178 (2000), 129.  doi: 10.1007/BF02505892.  Google Scholar

[3]

A. Alvino and A. Mercaldo, Nonlinear elliptic problems with $L^1$ data: an approach via symmetrization methods,, \emph{Mediter. J. Math.}, 5 (): 173.  doi: 10.1007/s00009-008-0142-5.  Google Scholar

[4]

A. Ancona, Elliptic operators, conormal derivatives, and positive parts of functions (with an appendix by Haim Brezis),, \emph{J. Funct. Anal.}, 257 (2009), 2124.  doi: 10.1016/j.jfa.2008.12.019.  Google Scholar

[5]

A. Banerjee and J. Lewis, Gradient bounds for $p$-harmonic systems with vanishing Neumann data in a convex domain,, preprint., ().  doi: 10.1016/j.na.2014.01.009.  Google Scholar

[6]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, \emph{Ann. Sc. Norm. Sup. Pisa}, 22 (1995), 241.   Google Scholar

[7]

C. Bennett and R. Sharpley, Interpolation of Operators,, Academic Press, (1988).   Google Scholar

[8]

A. Bensoussan and J. Frehse, Regularity Results for Nonlinear Elliptic Systems and Applications,, Springer-Verlag, (2002).  doi: 10.1007/978-3-662-12905-0.  Google Scholar

[9]

L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data,, \emph{J. Funct. Anal.}, 87 (1989), 149.  doi: 10.1016/0022-1236(89)90005-0.  Google Scholar

[10]

Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities,, Springer-Verlag, (1988).  doi: 10.1007/978-3-662-07441-1.  Google Scholar

[11]

M. Carro, L. Pick, J. Soria and V. D. Stepanov, On embeddings between classical Lorentz spaces,, \emph{Math. Inequal. Appl.}, 4 (2001), 397.  doi: 10.7153/mia-04-37.  Google Scholar

[12]

J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian,, in \emph{Problems in Analysis} (Papers dedicated to Salomon Bochner, (1970), 195.   Google Scholar

[13]

A. Cianchi, On relative isoperimetric inequalities in the plane,, \emph{Boll. Un. Mat. Ital.}, 3-B (1989), 289.   Google Scholar

[14]

A. Cianchi, Elliptic equations on manifolds and isoperimetric inequalities,, \emph{Proc. Royal Soc. Edinburgh Sect A}, 114 (1990), 213.  doi: 10.1017/S0308210500024392.  Google Scholar

[15]

A. Cianchi, Maximizing the $L^\infty$ norm of the gradient of solutions to the Poisson equation,, \emph{J. Geom. Anal.}, 2 (1992), 499.  doi: 10.1007/BF02921575.  Google Scholar

[16]

A. Cianchi, A sharp embedding theorem for Orlicz-Sobolev spaces,, \emph{Indiana Univ. Math. J.}, 45 (1996), 39.  doi: 10.1512/iumj.1996.45.1958.  Google Scholar

[17]

A. Cianchi, Boundedness of solutions to variational problems under general growth conditions,, \emph{Comm. Part. Diff. Eq.}, 22 (1997), 1629.  doi: 10.1080/03605309708821313.  Google Scholar

[18]

A. Cianchi, Moser-Trudinger inequalities without boundary conditions and isoperimetric problems,, \emph{Indiana Univ. Math. J.}, 54 (2005), 669.  doi: 10.1512/iumj.2005.54.2589.  Google Scholar

[19]

A. Cianchi and V. Maz'ya, Neumann problems and isocapacitary inequalites,, \emph{J. Math. Pures Appl.}, 89 (2008), 71.  doi: 10.1016/j.matpur.2007.10.001.  Google Scholar

[20]

A. Cianchi and V. Maz'ya, Global Lipschitz regularity for a class of quasilinear elliptic equations,, \emph{Comm. Part. Diff. Equat.}, 36 (2011), 100.  doi: 10.1080/03605301003657843.  Google Scholar

[21]

A. Cianchi and V. Maz'ya, On the discreteness of the spectrum of the Laplacian on noncompact Riemannian manifolds,, \emph{J. Differential Geom.}, 87 (2011), 469.   Google Scholar

[22]

A. Cianchi and V. Maz'ya, Boundedness of solutions to the Schrödinger equation under Neumann boundary conditions,, \emph{J. Math. Pures Appl.}, 98 (2012), 654.  doi: 10.1016/j.matpur.2012.05.007.  Google Scholar

[23]

A. Cianchi and V. Maz'ya, Bounds for eigenfunctions of the Laplacian on noncompact Riemannian manifolds,, \emph{Amer. J. Math.}, 135 (2013), 579.  doi: 10.1353/ajm.2013.0028.  Google Scholar

[24]

A. Cianchi and V. Maz'ya, Global boundedness of the gradient for a class of nonlinear elliptic systems,, \emph{Arch. Ration. Mech. Anal.}, 212 (2014), 129.  doi: 10.1007/s00205-013-0705-x.  Google Scholar

[25]

A. Cianchi and V. Maz'ya, Gradient regularity via rearrangements for $p$-Laplacian type elliptic problem,, \emph{J. Europ. Math. Soc.}, 16 (2014), 571.  doi: 10.4171/JEMS/440.  Google Scholar

[26]

A. Cianchi and L. Pick, Sobolev embeddings into $BMO$, $VMO$ and $L^{\infty}$,, \emph{Arkiv Mat.}, 36 (1998), 317.  doi: 10.1007/BF02384772.  Google Scholar

[27]

R. Courant and D. Hilbert, Methoden der mathematischen Physik,, Springer-Verlag, (1937).   Google Scholar

[28]

A. Dall'Aglio, Approximated solutions of equations with $L^1$ data. Application to the $H$-convergence of quasi-linear parabolic equations,, \emph{Ann. Mat. Pura Appl.}, 170 (1996), 207.  doi: 10.1007/BF01758989.  Google Scholar

[29]

G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data,, \emph{Ann. Sc. Norm. Sup. Pisa Cl. Sci.}, 28 (1999), 741.   Google Scholar

[30]

E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico,, \emph{Boll. Un. Mat. Ital.}, 1 (1968), 135.   Google Scholar

[31]

T. Del Vecchio, Nonlinear elliptic equations with measure data,, \emph{Potential Anal.}, 4 (1995), 185.  doi: 10.1007/BF01275590.  Google Scholar

[32]

G. Dolzmann, N. Hungerbühler and S. Müller, Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right-hand side,, \emph{J. Reine Angew. Math.}, 520 (2000), 1.  doi: 10.1515/crll.2000.022.  Google Scholar

[33]

F. Duzaar and G. Mingione, Local Lipschitz regularity for degenerate elliptic systems,, \emph{Ann. Inst. Henri Poincar\'e}, 27 (2010), 1361.  doi: 10.1016/j.anihpc.2010.07.002.  Google Scholar

[34]

F. Duzaar and G. Mingione, Gradient continuity estimates,, \emph{Calc. Var. Part. Diff. Equat.}, 39 (2010), 379.  doi: 10.1007/s00526-010-0314-6.  Google Scholar

[35]

S. Gallot, Inégalités isopérimétriques et analitiques sur les variétés riemanniennes,, \emph{Asterisque}, 163 (1988), 31.   Google Scholar

[36]

M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,, Annals of Mathematical Studies, (1983).   Google Scholar

[37]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, 2$^{nd}$ edition, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[38]

E. Giusti, Direct Methods in the Calculus of Variations,, World Scientific, (2003).  doi: 10.1142/9789812795557.  Google Scholar

[39]

E. Giusti and M. Miranda, Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni,, \emph{Boll. Un. Mat. Ital.}, 1 (1968), 219.   Google Scholar

[40]

P. Haiłasz and P. Koskela, Isoperimetric inequalites and imbedding theorems in irregular domains,, \emph{J. London Math. Soc.}, 58 (1998), 425.  doi: 10.1112/S0024610798006346.  Google Scholar

[41]

B. Kawohl, Rearrangements and Convexity of Level Sets in PDE,, Lecture Notes in Math., 1150 (1150).   Google Scholar

[42]

S. Kesavan, Symmetrization & Applications,, Series in Analysis 3, (2006).  doi: 10.1142/9789812773937.  Google Scholar

[43]

T. Kilpeläinen and J. Malý, Sobolev inequalities on sets with irregular boundaries,, \emph{Z. Anal. Anwendungen}, 19 (2000), 369.  doi: 10.4171/ZAA/956.  Google Scholar

[44]

V. A. Kozlov, V. G. Maz'ya and J. Rossman, Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations,, Math. Surveys Monographs 52, (1997).   Google Scholar

[45]

I. N. Krol' and V. G. Maz'ya, On the absence of continuity and Hölder continuity of solutions of quasilinear elliptic equations near a nonregular boundary,, \emph{Trudy Moskov. Mat. Os\vs\vc.}, 26 (1972), 73.   Google Scholar

[46]

T. Kuusi and G. Mingione, Linear potentials in nonlinear potential theory,, \emph{Arch. Ration. Mech. Anal.}, 207 (2013), 215.  doi: 10.1007/s00205-012-0562-z.  Google Scholar

[47]

T. Kuusi and G. Mingione, A nonlinear Stein theorem,, \emph{Calc. Var. Part. Diff. Equat.}, ().   Google Scholar

[48]

D. A. Labutin, Embedding of Sobolev spaces on Hölder domains,, \emph{Proc. Steklov Inst. Math.}, 227 (1999), 163.   Google Scholar

[49]

O. A. Ladyzenskaya and N. N. Ural'ceva, Linear and Quasilinear Elliptic Equations,, Academic Press, (1968).   Google Scholar

[50]

G. M. Lieberman, The Dirichlet problem for quasilinear elliptic equations with continuously differentiable data,, \emph{Comm. Part. Diff. Eq.}, 11 (1986), 167.  doi: 10.1080/03605308608820422.  Google Scholar

[51]

G. M. Lieberman, Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions,, \emph{Ann. Mat. Pura Appl.}, 148 (1987), 77.  doi: 10.1007/BF01774284.  Google Scholar

[52]

G. M. Lieberman, The natural generalization of the natural conditions of Ladyzenskaya and Ural'ceva for elliptic equations,, \emph{Comm. Part. Diff. Eq.}, 16 (1991), 311.  doi: 10.1080/03605309108820761.  Google Scholar

[53]

G. M. Lieberman, The conormal derivative problem for equations of variational type in nonsmooth domains,, \emph{Trans. Amer. Math. Soc.}, 330 (1992), 41.  doi: 10.2307/2154153.  Google Scholar

[54]

P.-L. Lions and F. Murat, Sur les solutions renormalisées d'équations elliptiques non linéaires,, manuscript., ().   Google Scholar

[55]

P.-L. Lions and F. Pacella, Isoperimetric inequalities for convex cones,, \emph{Proc. Amer. Math. Soc.}, 109 (1990), 477.  doi: 10.2307/2048011.  Google Scholar

[56]

C. Maderna and S. Salsa, A priori bounds in non-linear Neumann problems,, \emph{Boll. Un. Mat. Ital.}, 16 (1979), 1144.   Google Scholar

[57]

J. Malý and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations,, American Mathematical Society, (1997).  doi: 10.1090/surv/051.  Google Scholar

[58]

V. G. Maz'ya, Classes of regions and imbedding theorems for function spaces,, \emph{Dokl. Akad. Nauk. SSSR}, 133 (1960), 527.   Google Scholar

[59]

V. G. Maz'ya, p-conductivity and theorems on embedding certain functional spaces into a C-space,, \emph{Dokl. Akad. Nauk. SSSR}, 140 (1961), 299.   Google Scholar

[60]

V. G. Maz'ya, Some estimates of solutions of second-order elliptic equations,, \emph{Dokl. Akad. Nauk. SSSR}, 137 (1961), 1057.   Google Scholar

[61]

V. G. Maz'ya, On weak solutions of the Dirichlet and Neumann problems,, \emph{Trusdy Moskov. Mat. Ob\v s\v c.}, 20 (1969), 137.   Google Scholar

[62]

V. G. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations,, Springer, (2011).  doi: 10.1007/978-3-642-15564-2.  Google Scholar

[63]

V. G. Maz'ya and S. V. Poborchi, Differentiable Functions on Bad Domains,, World Scientific, (1997).   Google Scholar

[64]

N. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations,, \emph{Ann. Scuola Norm. Sup. Pisa}, 17 (1963), 189.   Google Scholar

[65]

G. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations,, \emph{Appl. Math.}, 51 (2006), 355.  doi: 10.1007/s10778-006-0110-3.  Google Scholar

[66]

G. Mingione, Gradient estimates below the duality exponent,, \emph{Math. Ann.}, 346 (2010), 571.  doi: 10.1007/s00208-009-0411-z.  Google Scholar

[67]

C. B. Morrey, Multiple Integrals in the Calculus of Variations,, Springer-Verlag, (1966).   Google Scholar

[68]

F. Murat, Soluciones renormalizadas de EDP elipticas no lineales,, Preprint 93023 (Spanish), (1993).   Google Scholar

[69]

F. Murat, Équations elliptiques non linéaires avec second membre $L^1$ ou mesure,, in \emph{Actes du 26\`eme Congr\'es National d'Analyse Num\'erique, (1994).   Google Scholar

[70]

J. Nečas, Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity,, in \emph{Theor. Nonlin. Oper., (1975), 197.   Google Scholar

[71]

R. O'Neil, Convolution operators in $L(p,q)$ spaces,, \emph{Duke Math. J.}, 30 (1963), 129.   Google Scholar

[72]

B. Opic and L. Pick, On generalized Lorentz-Zygmund spaces,, \emph{Math. Ineq. Appl.}, 2 (1999), 391.  doi: 10.7153/mia-02-35.  Google Scholar

[73]

J. Serrin, Pathological solutions of elliptic partial differential equations,, \emph{Ann. Scuola Norm. Sup. Pisa}, 18 (1964), 385.   Google Scholar

[74]

V. Sverák and X. Yan, Non-Lipschitz minimizers of smooth uniformly convex variational integrals,, \emph{Proc. Natl. Acad. Sci. USA}, 99 (2002), 15269.  doi: 10.1073/pnas.222494699.  Google Scholar

[75]

G. Talenti, Elliptic equations and rearrangements,, \emph{Ann. Sc. Norm. Sup. Pisa}, 3 (1976), 697.   Google Scholar

[76]

G. Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces,, \emph{Ann. Mat. Pura Appl.}, 120 (1979), 159.  doi: 10.1007/BF02411942.  Google Scholar

[77]

G. Trombetti, Symmetrization methods for partial differential equations,, \emph{Boll. Un. Mat. Ital.}, 3-B (2000), 601.   Google Scholar

show all references

References:
[1]

A. Alvino, A. Cianchi, V. Maz'ya and A. Mercaldo, Well-posed elliptic Neumann problems involving irregular data and domains,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 27 (2010), 1017.  doi: 10.1016/j.anihpc.2010.01.010.  Google Scholar

[2]

A. Alvino, V. Ferone and G.Trombetti, Estimates for the gradient of solutions of nonlinear elliptic equations with $L^1$ data,, \emph{Ann. Mat. Pura Appl.}, 178 (2000), 129.  doi: 10.1007/BF02505892.  Google Scholar

[3]

A. Alvino and A. Mercaldo, Nonlinear elliptic problems with $L^1$ data: an approach via symmetrization methods,, \emph{Mediter. J. Math.}, 5 (): 173.  doi: 10.1007/s00009-008-0142-5.  Google Scholar

[4]

A. Ancona, Elliptic operators, conormal derivatives, and positive parts of functions (with an appendix by Haim Brezis),, \emph{J. Funct. Anal.}, 257 (2009), 2124.  doi: 10.1016/j.jfa.2008.12.019.  Google Scholar

[5]

A. Banerjee and J. Lewis, Gradient bounds for $p$-harmonic systems with vanishing Neumann data in a convex domain,, preprint., ().  doi: 10.1016/j.na.2014.01.009.  Google Scholar

[6]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, \emph{Ann. Sc. Norm. Sup. Pisa}, 22 (1995), 241.   Google Scholar

[7]

C. Bennett and R. Sharpley, Interpolation of Operators,, Academic Press, (1988).   Google Scholar

[8]

A. Bensoussan and J. Frehse, Regularity Results for Nonlinear Elliptic Systems and Applications,, Springer-Verlag, (2002).  doi: 10.1007/978-3-662-12905-0.  Google Scholar

[9]

L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data,, \emph{J. Funct. Anal.}, 87 (1989), 149.  doi: 10.1016/0022-1236(89)90005-0.  Google Scholar

[10]

Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities,, Springer-Verlag, (1988).  doi: 10.1007/978-3-662-07441-1.  Google Scholar

[11]

M. Carro, L. Pick, J. Soria and V. D. Stepanov, On embeddings between classical Lorentz spaces,, \emph{Math. Inequal. Appl.}, 4 (2001), 397.  doi: 10.7153/mia-04-37.  Google Scholar

[12]

J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian,, in \emph{Problems in Analysis} (Papers dedicated to Salomon Bochner, (1970), 195.   Google Scholar

[13]

A. Cianchi, On relative isoperimetric inequalities in the plane,, \emph{Boll. Un. Mat. Ital.}, 3-B (1989), 289.   Google Scholar

[14]

A. Cianchi, Elliptic equations on manifolds and isoperimetric inequalities,, \emph{Proc. Royal Soc. Edinburgh Sect A}, 114 (1990), 213.  doi: 10.1017/S0308210500024392.  Google Scholar

[15]

A. Cianchi, Maximizing the $L^\infty$ norm of the gradient of solutions to the Poisson equation,, \emph{J. Geom. Anal.}, 2 (1992), 499.  doi: 10.1007/BF02921575.  Google Scholar

[16]

A. Cianchi, A sharp embedding theorem for Orlicz-Sobolev spaces,, \emph{Indiana Univ. Math. J.}, 45 (1996), 39.  doi: 10.1512/iumj.1996.45.1958.  Google Scholar

[17]

A. Cianchi, Boundedness of solutions to variational problems under general growth conditions,, \emph{Comm. Part. Diff. Eq.}, 22 (1997), 1629.  doi: 10.1080/03605309708821313.  Google Scholar

[18]

A. Cianchi, Moser-Trudinger inequalities without boundary conditions and isoperimetric problems,, \emph{Indiana Univ. Math. J.}, 54 (2005), 669.  doi: 10.1512/iumj.2005.54.2589.  Google Scholar

[19]

A. Cianchi and V. Maz'ya, Neumann problems and isocapacitary inequalites,, \emph{J. Math. Pures Appl.}, 89 (2008), 71.  doi: 10.1016/j.matpur.2007.10.001.  Google Scholar

[20]

A. Cianchi and V. Maz'ya, Global Lipschitz regularity for a class of quasilinear elliptic equations,, \emph{Comm. Part. Diff. Equat.}, 36 (2011), 100.  doi: 10.1080/03605301003657843.  Google Scholar

[21]

A. Cianchi and V. Maz'ya, On the discreteness of the spectrum of the Laplacian on noncompact Riemannian manifolds,, \emph{J. Differential Geom.}, 87 (2011), 469.   Google Scholar

[22]

A. Cianchi and V. Maz'ya, Boundedness of solutions to the Schrödinger equation under Neumann boundary conditions,, \emph{J. Math. Pures Appl.}, 98 (2012), 654.  doi: 10.1016/j.matpur.2012.05.007.  Google Scholar

[23]

A. Cianchi and V. Maz'ya, Bounds for eigenfunctions of the Laplacian on noncompact Riemannian manifolds,, \emph{Amer. J. Math.}, 135 (2013), 579.  doi: 10.1353/ajm.2013.0028.  Google Scholar

[24]

A. Cianchi and V. Maz'ya, Global boundedness of the gradient for a class of nonlinear elliptic systems,, \emph{Arch. Ration. Mech. Anal.}, 212 (2014), 129.  doi: 10.1007/s00205-013-0705-x.  Google Scholar

[25]

A. Cianchi and V. Maz'ya, Gradient regularity via rearrangements for $p$-Laplacian type elliptic problem,, \emph{J. Europ. Math. Soc.}, 16 (2014), 571.  doi: 10.4171/JEMS/440.  Google Scholar

[26]

A. Cianchi and L. Pick, Sobolev embeddings into $BMO$, $VMO$ and $L^{\infty}$,, \emph{Arkiv Mat.}, 36 (1998), 317.  doi: 10.1007/BF02384772.  Google Scholar

[27]

R. Courant and D. Hilbert, Methoden der mathematischen Physik,, Springer-Verlag, (1937).   Google Scholar

[28]

A. Dall'Aglio, Approximated solutions of equations with $L^1$ data. Application to the $H$-convergence of quasi-linear parabolic equations,, \emph{Ann. Mat. Pura Appl.}, 170 (1996), 207.  doi: 10.1007/BF01758989.  Google Scholar

[29]

G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data,, \emph{Ann. Sc. Norm. Sup. Pisa Cl. Sci.}, 28 (1999), 741.   Google Scholar

[30]

E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico,, \emph{Boll. Un. Mat. Ital.}, 1 (1968), 135.   Google Scholar

[31]

T. Del Vecchio, Nonlinear elliptic equations with measure data,, \emph{Potential Anal.}, 4 (1995), 185.  doi: 10.1007/BF01275590.  Google Scholar

[32]

G. Dolzmann, N. Hungerbühler and S. Müller, Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right-hand side,, \emph{J. Reine Angew. Math.}, 520 (2000), 1.  doi: 10.1515/crll.2000.022.  Google Scholar

[33]

F. Duzaar and G. Mingione, Local Lipschitz regularity for degenerate elliptic systems,, \emph{Ann. Inst. Henri Poincar\'e}, 27 (2010), 1361.  doi: 10.1016/j.anihpc.2010.07.002.  Google Scholar

[34]

F. Duzaar and G. Mingione, Gradient continuity estimates,, \emph{Calc. Var. Part. Diff. Equat.}, 39 (2010), 379.  doi: 10.1007/s00526-010-0314-6.  Google Scholar

[35]

S. Gallot, Inégalités isopérimétriques et analitiques sur les variétés riemanniennes,, \emph{Asterisque}, 163 (1988), 31.   Google Scholar

[36]

M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,, Annals of Mathematical Studies, (1983).   Google Scholar

[37]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, 2$^{nd}$ edition, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[38]

E. Giusti, Direct Methods in the Calculus of Variations,, World Scientific, (2003).  doi: 10.1142/9789812795557.  Google Scholar

[39]

E. Giusti and M. Miranda, Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni,, \emph{Boll. Un. Mat. Ital.}, 1 (1968), 219.   Google Scholar

[40]

P. Haiłasz and P. Koskela, Isoperimetric inequalites and imbedding theorems in irregular domains,, \emph{J. London Math. Soc.}, 58 (1998), 425.  doi: 10.1112/S0024610798006346.  Google Scholar

[41]

B. Kawohl, Rearrangements and Convexity of Level Sets in PDE,, Lecture Notes in Math., 1150 (1150).   Google Scholar

[42]

S. Kesavan, Symmetrization & Applications,, Series in Analysis 3, (2006).  doi: 10.1142/9789812773937.  Google Scholar

[43]

T. Kilpeläinen and J. Malý, Sobolev inequalities on sets with irregular boundaries,, \emph{Z. Anal. Anwendungen}, 19 (2000), 369.  doi: 10.4171/ZAA/956.  Google Scholar

[44]

V. A. Kozlov, V. G. Maz'ya and J. Rossman, Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations,, Math. Surveys Monographs 52, (1997).   Google Scholar

[45]

I. N. Krol' and V. G. Maz'ya, On the absence of continuity and Hölder continuity of solutions of quasilinear elliptic equations near a nonregular boundary,, \emph{Trudy Moskov. Mat. Os\vs\vc.}, 26 (1972), 73.   Google Scholar

[46]

T. Kuusi and G. Mingione, Linear potentials in nonlinear potential theory,, \emph{Arch. Ration. Mech. Anal.}, 207 (2013), 215.  doi: 10.1007/s00205-012-0562-z.  Google Scholar

[47]

T. Kuusi and G. Mingione, A nonlinear Stein theorem,, \emph{Calc. Var. Part. Diff. Equat.}, ().   Google Scholar

[48]

D. A. Labutin, Embedding of Sobolev spaces on Hölder domains,, \emph{Proc. Steklov Inst. Math.}, 227 (1999), 163.   Google Scholar

[49]

O. A. Ladyzenskaya and N. N. Ural'ceva, Linear and Quasilinear Elliptic Equations,, Academic Press, (1968).   Google Scholar

[50]

G. M. Lieberman, The Dirichlet problem for quasilinear elliptic equations with continuously differentiable data,, \emph{Comm. Part. Diff. Eq.}, 11 (1986), 167.  doi: 10.1080/03605308608820422.  Google Scholar

[51]

G. M. Lieberman, Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions,, \emph{Ann. Mat. Pura Appl.}, 148 (1987), 77.  doi: 10.1007/BF01774284.  Google Scholar

[52]

G. M. Lieberman, The natural generalization of the natural conditions of Ladyzenskaya and Ural'ceva for elliptic equations,, \emph{Comm. Part. Diff. Eq.}, 16 (1991), 311.  doi: 10.1080/03605309108820761.  Google Scholar

[53]

G. M. Lieberman, The conormal derivative problem for equations of variational type in nonsmooth domains,, \emph{Trans. Amer. Math. Soc.}, 330 (1992), 41.  doi: 10.2307/2154153.  Google Scholar

[54]

P.-L. Lions and F. Murat, Sur les solutions renormalisées d'équations elliptiques non linéaires,, manuscript., ().   Google Scholar

[55]

P.-L. Lions and F. Pacella, Isoperimetric inequalities for convex cones,, \emph{Proc. Amer. Math. Soc.}, 109 (1990), 477.  doi: 10.2307/2048011.  Google Scholar

[56]

C. Maderna and S. Salsa, A priori bounds in non-linear Neumann problems,, \emph{Boll. Un. Mat. Ital.}, 16 (1979), 1144.   Google Scholar

[57]

J. Malý and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations,, American Mathematical Society, (1997).  doi: 10.1090/surv/051.  Google Scholar

[58]

V. G. Maz'ya, Classes of regions and imbedding theorems for function spaces,, \emph{Dokl. Akad. Nauk. SSSR}, 133 (1960), 527.   Google Scholar

[59]

V. G. Maz'ya, p-conductivity and theorems on embedding certain functional spaces into a C-space,, \emph{Dokl. Akad. Nauk. SSSR}, 140 (1961), 299.   Google Scholar

[60]

V. G. Maz'ya, Some estimates of solutions of second-order elliptic equations,, \emph{Dokl. Akad. Nauk. SSSR}, 137 (1961), 1057.   Google Scholar

[61]

V. G. Maz'ya, On weak solutions of the Dirichlet and Neumann problems,, \emph{Trusdy Moskov. Mat. Ob\v s\v c.}, 20 (1969), 137.   Google Scholar

[62]

V. G. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations,, Springer, (2011).  doi: 10.1007/978-3-642-15564-2.  Google Scholar

[63]

V. G. Maz'ya and S. V. Poborchi, Differentiable Functions on Bad Domains,, World Scientific, (1997).   Google Scholar

[64]

N. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations,, \emph{Ann. Scuola Norm. Sup. Pisa}, 17 (1963), 189.   Google Scholar

[65]

G. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations,, \emph{Appl. Math.}, 51 (2006), 355.  doi: 10.1007/s10778-006-0110-3.  Google Scholar

[66]

G. Mingione, Gradient estimates below the duality exponent,, \emph{Math. Ann.}, 346 (2010), 571.  doi: 10.1007/s00208-009-0411-z.  Google Scholar

[67]

C. B. Morrey, Multiple Integrals in the Calculus of Variations,, Springer-Verlag, (1966).   Google Scholar

[68]

F. Murat, Soluciones renormalizadas de EDP elipticas no lineales,, Preprint 93023 (Spanish), (1993).   Google Scholar

[69]

F. Murat, Équations elliptiques non linéaires avec second membre $L^1$ ou mesure,, in \emph{Actes du 26\`eme Congr\'es National d'Analyse Num\'erique, (1994).   Google Scholar

[70]

J. Nečas, Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity,, in \emph{Theor. Nonlin. Oper., (1975), 197.   Google Scholar

[71]

R. O'Neil, Convolution operators in $L(p,q)$ spaces,, \emph{Duke Math. J.}, 30 (1963), 129.   Google Scholar

[72]

B. Opic and L. Pick, On generalized Lorentz-Zygmund spaces,, \emph{Math. Ineq. Appl.}, 2 (1999), 391.  doi: 10.7153/mia-02-35.  Google Scholar

[73]

J. Serrin, Pathological solutions of elliptic partial differential equations,, \emph{Ann. Scuola Norm. Sup. Pisa}, 18 (1964), 385.   Google Scholar

[74]

V. Sverák and X. Yan, Non-Lipschitz minimizers of smooth uniformly convex variational integrals,, \emph{Proc. Natl. Acad. Sci. USA}, 99 (2002), 15269.  doi: 10.1073/pnas.222494699.  Google Scholar

[75]

G. Talenti, Elliptic equations and rearrangements,, \emph{Ann. Sc. Norm. Sup. Pisa}, 3 (1976), 697.   Google Scholar

[76]

G. Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces,, \emph{Ann. Mat. Pura Appl.}, 120 (1979), 159.  doi: 10.1007/BF02411942.  Google Scholar

[77]

G. Trombetti, Symmetrization methods for partial differential equations,, \emph{Boll. Un. Mat. Ital.}, 3-B (2000), 601.   Google Scholar

[1]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[2]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[3]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[4]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[5]

Yanjun He, Wei Zeng, Minghui Yu, Hongtao Zhou, Delie Ming. Incentives for production capacity improvement in construction supplier development. Journal of Industrial & Management Optimization, 2021, 17 (1) : 409-426. doi: 10.3934/jimo.2019118

[6]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[7]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[8]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[9]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[10]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[11]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[12]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[13]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[14]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[15]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[16]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[19]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[20]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (98)
  • HTML views (0)
  • Cited by (19)

Other articles
by authors

[Back to Top]