• Previous Article
    Some properties of minimizers of a variational problem involving the total variation functional
  • CPAA Home
  • This Issue
  • Next Article
    Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems
January  2015, 14(1): 329-339. doi: 10.3934/cpaa.2015.14.329

First eigenfunctions of the 1-Laplacian are viscosity solutions

1. 

Mathematisches Institut, Universität zu Köln, 50923 Köln

2. 

Fachrichtung Mathematik, Technische Universität Dresden,01062 Dresden, Germany

Received  February 2014 Revised  March 2014 Published  September 2014

We address the question if eigenfunctions of the 1-Laplacian, which are obtained through a variational argument, are also viscosity solutions of the associated strongly degenerate formal Euler equation. The answer is positive, but examples show also that there are many more viscosity solutions than expected.
Citation: Bernd Kawohl, Friedemann Schuricht. First eigenfunctions of the 1-Laplacian are viscosity solutions. Communications on Pure & Applied Analysis, 2015, 14 (1) : 329-339. doi: 10.3934/cpaa.2015.14.329
References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems,, Oxford University Press, (2000).   Google Scholar

[2]

G. Anzellotti, Pairings between measures and bounded functions and compensated compactness,, \emph{Ann. Mat. Pura Appl.}, 135 (1983), 193.  doi: 10.1007/BF01781073.  Google Scholar

[3]

M. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc.}, 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[4]

M. Degiovanni and P. Margone, Linking solutions for quasilinear equations at critical growth involving the 1-Laplace operator,, \emph{Calc. Var.}, 36 (2009), 591.  doi: 10.1007/s00526-009-0246-1.  Google Scholar

[5]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, CRC Press, (1992).   Google Scholar

[6]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, 2nd ed. Springer-Verlag, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[7]

E. Giusti, On the equation of surfaces of prescribed mean curvature, existence and uniqueness without boundary conditions,, \emph{Invent. Math.}, 46 (1978), 111.   Google Scholar

[8]

J. Horák, Numerical investigation of the smallest eigenvalues of the p-Laplace operator on planar domains,, \emph{Electron. J. Differential Equations}, 132 (2011).   Google Scholar

[9]

P. Juutinen, P. Lindqvist and J. J. Manfredi, The $\infty$-Eigenvalue Problem,, \emph{Arch Ration Mech. Anal.}, 148 (1999), 89.  doi: 10.1007/s002050050157.  Google Scholar

[10]

B. Kawohl and N. Kutev, Global behaviour of solutions to a parabolic mean curvature equation,, \emph{Diff. int. Eqs.}, 8 (1995), 1923.   Google Scholar

[11]

B. Kawohl and N. Kutev, Viscosity solutions for degenerate and nonmonotone elliptic equations,, in \emph{Applied Nonlinear Analysis} (B. da Vega, (1999), 185.   Google Scholar

[12]

B. Kawohl and V. Fridman, Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant,, \emph{Comment. Math. Univ. Carolinae}, 44 (2003), 659.   Google Scholar

[13]

B. Kawohl and Th. Lachand-Robert, Characterization of Cheeger sets for convex subsets of the plane,, \emph{Pacific J. Math.}, 225 (2006), 103.  doi: 10.2140/pjm.2006.225.103.  Google Scholar

[14]

B. Kawohl and F. Schuricht, Dirichlet problems for the 1-Laplace operator, including the eigenvalue problem,, \emph{Communications in Contemporary Mathematics}, 9 (2007), 515.  doi: 10.1142/S0219199707002514.  Google Scholar

[15]

B. Kawohl, Variations on the $p$-Laplacian,, in \emph{Nonlinear Elliptic Partial Differential Equations} (D. Bonheure, 540 (2011), 35.  doi: 10.1090/conm/540/10657.  Google Scholar

[16]

Z. Milbers and F. Schuricht, Existence of a sequence of eigensolutions for the 1-Laplace operator,, \emph{J. Lond. Math. Soc.}, 82 (2010), 74.  doi: 10.1112/jlms/jdq012.  Google Scholar

[17]

Z. Milbers and F. Schuricht, Some special aspects related to the 1-Laplace operator,, \emph{Adv. Calc. Var.}, 4 (2011), 101.  doi: 10.1515/ACV.2010.021.  Google Scholar

[18]

Z. Milbers and F. Schuricht, Necessary condition for eigensolutions of the 1-Laplace operator by means of inner variations,, \emph{Math. Ann.}, 356 (2013), 147.   Google Scholar

[19]

E. Parini, An Introduction to the Cheeger problem,, \emph{Surveys in Mathematics and its Applications}, 6 (2011), 9.   Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems,, Oxford University Press, (2000).   Google Scholar

[2]

G. Anzellotti, Pairings between measures and bounded functions and compensated compactness,, \emph{Ann. Mat. Pura Appl.}, 135 (1983), 193.  doi: 10.1007/BF01781073.  Google Scholar

[3]

M. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc.}, 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[4]

M. Degiovanni and P. Margone, Linking solutions for quasilinear equations at critical growth involving the 1-Laplace operator,, \emph{Calc. Var.}, 36 (2009), 591.  doi: 10.1007/s00526-009-0246-1.  Google Scholar

[5]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, CRC Press, (1992).   Google Scholar

[6]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, 2nd ed. Springer-Verlag, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[7]

E. Giusti, On the equation of surfaces of prescribed mean curvature, existence and uniqueness without boundary conditions,, \emph{Invent. Math.}, 46 (1978), 111.   Google Scholar

[8]

J. Horák, Numerical investigation of the smallest eigenvalues of the p-Laplace operator on planar domains,, \emph{Electron. J. Differential Equations}, 132 (2011).   Google Scholar

[9]

P. Juutinen, P. Lindqvist and J. J. Manfredi, The $\infty$-Eigenvalue Problem,, \emph{Arch Ration Mech. Anal.}, 148 (1999), 89.  doi: 10.1007/s002050050157.  Google Scholar

[10]

B. Kawohl and N. Kutev, Global behaviour of solutions to a parabolic mean curvature equation,, \emph{Diff. int. Eqs.}, 8 (1995), 1923.   Google Scholar

[11]

B. Kawohl and N. Kutev, Viscosity solutions for degenerate and nonmonotone elliptic equations,, in \emph{Applied Nonlinear Analysis} (B. da Vega, (1999), 185.   Google Scholar

[12]

B. Kawohl and V. Fridman, Isoperimetric estimates for the first eigenvalue of the $p$-Laplace operator and the Cheeger constant,, \emph{Comment. Math. Univ. Carolinae}, 44 (2003), 659.   Google Scholar

[13]

B. Kawohl and Th. Lachand-Robert, Characterization of Cheeger sets for convex subsets of the plane,, \emph{Pacific J. Math.}, 225 (2006), 103.  doi: 10.2140/pjm.2006.225.103.  Google Scholar

[14]

B. Kawohl and F. Schuricht, Dirichlet problems for the 1-Laplace operator, including the eigenvalue problem,, \emph{Communications in Contemporary Mathematics}, 9 (2007), 515.  doi: 10.1142/S0219199707002514.  Google Scholar

[15]

B. Kawohl, Variations on the $p$-Laplacian,, in \emph{Nonlinear Elliptic Partial Differential Equations} (D. Bonheure, 540 (2011), 35.  doi: 10.1090/conm/540/10657.  Google Scholar

[16]

Z. Milbers and F. Schuricht, Existence of a sequence of eigensolutions for the 1-Laplace operator,, \emph{J. Lond. Math. Soc.}, 82 (2010), 74.  doi: 10.1112/jlms/jdq012.  Google Scholar

[17]

Z. Milbers and F. Schuricht, Some special aspects related to the 1-Laplace operator,, \emph{Adv. Calc. Var.}, 4 (2011), 101.  doi: 10.1515/ACV.2010.021.  Google Scholar

[18]

Z. Milbers and F. Schuricht, Necessary condition for eigensolutions of the 1-Laplace operator by means of inner variations,, \emph{Math. Ann.}, 356 (2013), 147.   Google Scholar

[19]

E. Parini, An Introduction to the Cheeger problem,, \emph{Surveys in Mathematics and its Applications}, 6 (2011), 9.   Google Scholar

[1]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[2]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[3]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[4]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[5]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[6]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[7]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[8]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[9]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[10]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[11]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[12]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[13]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[14]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[15]

Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020128

[16]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[17]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[18]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (92)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]