March  2015, 14(2): 361-371. doi: 10.3934/cpaa.2015.14.361

Existence of solutions for a Kirchhoff-type-nonlocal operators of elliptic type

1. 

Department of Mathematics, Faculty of Sciences, Razi University, Kermanshah, 67149, Iran

2. 

Department of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China

Received  July 2013 Revised  July 2014 Published  December 2014

In this paper by using the minimal principle and Morse theory, we prove the existence of solutions to the following Kirchhoff nonlocal fractional equation: \begin{eqnarray} & M \left (\int_{\mathbb{R}^n\times \mathbb{R}^n} |u (x) - u (y)|^2 K (x - y) d x d y \right) (- \Delta)^s u = f (x, u (x)),\quad \textrm{in}\;\; \Omega,\\ & u = 0, \quad \textrm{in}\;\; \mathbb{R}^n \setminus \Omega, \end{eqnarray} where $(- \Delta)^s$ is the fractional Laplace operator, $s \in (0, 1)$ is a fix, $\Omega$ an open bounded subset of $\mathbb{R}^n$, $n > 2 s$, with Lipschitz boundary, $f: \Omega \times \mathbb{R} \to \mathbb{R}$ Carathéodory function and $M : \mathbb{R}^+ \to \mathbb{R}^+$ is a function that satisfy some suitable conditions.
Citation: Nemat Nyamoradi, Kaimin Teng. Existence of solutions for a Kirchhoff-type-nonlocal operators of elliptic type. Communications on Pure & Applied Analysis, 2015, 14 (2) : 361-371. doi: 10.3934/cpaa.2015.14.361
References:
[1]

B. Barrios, E. Colorado, A. De Pablo and U. Sanchez, On some critical problems for the fractional Laplacian operator,, \emph{J. Differential Equations}, 252 (2012), 6133.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[2]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv. Math.}, 224 (2010), 2052.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[3]

A. Capella, Solutions of a pure critical exponent problem involving the half-Laplacian in annularshaped domains,, \emph{Commun. Pure Appl. Anal.}, 10 (2011), 1645.  doi: 10.3934/cpaa.2011.10.1645.  Google Scholar

[4]

A. Fiscella, R. Servadei and E. Valdinoci, A resonance problem for non-local elliptic operators,, preprint, (): 12.   Google Scholar

[5]

A. Fiscella, R. Servadei and E. Valdinoci, Asymptotically linear problems driven by the fractional Laplacian operator,, preprint, (): 12.   Google Scholar

[6]

A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator,, \emph{Nonlinear Anal.}, 94 (2014), 156.  doi: 10.1016/j.na.2013.08.011.  Google Scholar

[7]

J. Liu, The Morse index of a saddle point,, \emph{Syst. Sci. Math. Sci.}, 2 (1989), 32.   Google Scholar

[8]

J. Liu and J. Su, Remarks on multiple nontrivial solutions for quasilinear resonant problems,, \emph{J. Math. Anal. Appl.}, 258 (2001), 209.  doi: 10.1006/jmaa.2000.7374.  Google Scholar

[9]

R. Servadei, A critical fractional Laplace equation in the resonant case,, \emph{Topol. Methods Nonlinear Anal.}, ().   Google Scholar

[10]

R. Servadei, Infinitely many solutions for fractional Laplace equations with subcritical nonlinearity,, \emph{Contemp. Math.}, ().  doi: 10.1090/conm/595/11809.  Google Scholar

[11]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators,, \emph{J. Math. Anal. Appl.}, 389 (2012), 887.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[12]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type,, \emph{Discrete Continuous Dynam. Systems}, 33 (2013), 2105.   Google Scholar

[13]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators,, \emph{Rev. Mat. Iberoam.}, 29 (2013).  doi: 10.4171/RMI/750.  Google Scholar

[14]

R. Servadei and E. Valdinoci, The Brézis-Nirenberg result for the fractional Laplacian,, \emph{Trans. AMS}, ().   Google Scholar

[15]

R. Servadei and E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent,, preprint, (): 12.   Google Scholar

[16]

G. Sun and K. Teng, Existence and multiplicity of solutions for a class of fractional Kirchhoff-type problem,, \emph{Math. Commu.}, 19 (2014), 183.   Google Scholar

[17]

J. Tan, The Brézis-Nirenberg type problem involving the square root of the Laplacian,, \emph{Calc. Var. Partial Differential Equations}, 36 (2011), 21.  doi: 10.1007/s00526-010-0378-3.  Google Scholar

[18]

K. Teng, Multiplicity results for hemivariational inequalities driven by nonlocal elliptic operators,, \emph{J. Math. Anal. Appl.}, 396 (2012), 386.  doi: 10.1016/j.jmaa.2012.06.041.  Google Scholar

[19]

K. Teng, Two nontrivial solutions for hemivariational inequalities driven by nonlocal elliptic operators,, \emph{Nonlinear Anal. RWA}, 14 (2013), 867.  doi: 10.1016/j.nonrwa.2012.08.008.  Google Scholar

show all references

References:
[1]

B. Barrios, E. Colorado, A. De Pablo and U. Sanchez, On some critical problems for the fractional Laplacian operator,, \emph{J. Differential Equations}, 252 (2012), 6133.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[2]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv. Math.}, 224 (2010), 2052.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[3]

A. Capella, Solutions of a pure critical exponent problem involving the half-Laplacian in annularshaped domains,, \emph{Commun. Pure Appl. Anal.}, 10 (2011), 1645.  doi: 10.3934/cpaa.2011.10.1645.  Google Scholar

[4]

A. Fiscella, R. Servadei and E. Valdinoci, A resonance problem for non-local elliptic operators,, preprint, (): 12.   Google Scholar

[5]

A. Fiscella, R. Servadei and E. Valdinoci, Asymptotically linear problems driven by the fractional Laplacian operator,, preprint, (): 12.   Google Scholar

[6]

A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator,, \emph{Nonlinear Anal.}, 94 (2014), 156.  doi: 10.1016/j.na.2013.08.011.  Google Scholar

[7]

J. Liu, The Morse index of a saddle point,, \emph{Syst. Sci. Math. Sci.}, 2 (1989), 32.   Google Scholar

[8]

J. Liu and J. Su, Remarks on multiple nontrivial solutions for quasilinear resonant problems,, \emph{J. Math. Anal. Appl.}, 258 (2001), 209.  doi: 10.1006/jmaa.2000.7374.  Google Scholar

[9]

R. Servadei, A critical fractional Laplace equation in the resonant case,, \emph{Topol. Methods Nonlinear Anal.}, ().   Google Scholar

[10]

R. Servadei, Infinitely many solutions for fractional Laplace equations with subcritical nonlinearity,, \emph{Contemp. Math.}, ().  doi: 10.1090/conm/595/11809.  Google Scholar

[11]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators,, \emph{J. Math. Anal. Appl.}, 389 (2012), 887.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[12]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type,, \emph{Discrete Continuous Dynam. Systems}, 33 (2013), 2105.   Google Scholar

[13]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators,, \emph{Rev. Mat. Iberoam.}, 29 (2013).  doi: 10.4171/RMI/750.  Google Scholar

[14]

R. Servadei and E. Valdinoci, The Brézis-Nirenberg result for the fractional Laplacian,, \emph{Trans. AMS}, ().   Google Scholar

[15]

R. Servadei and E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent,, preprint, (): 12.   Google Scholar

[16]

G. Sun and K. Teng, Existence and multiplicity of solutions for a class of fractional Kirchhoff-type problem,, \emph{Math. Commu.}, 19 (2014), 183.   Google Scholar

[17]

J. Tan, The Brézis-Nirenberg type problem involving the square root of the Laplacian,, \emph{Calc. Var. Partial Differential Equations}, 36 (2011), 21.  doi: 10.1007/s00526-010-0378-3.  Google Scholar

[18]

K. Teng, Multiplicity results for hemivariational inequalities driven by nonlocal elliptic operators,, \emph{J. Math. Anal. Appl.}, 396 (2012), 386.  doi: 10.1016/j.jmaa.2012.06.041.  Google Scholar

[19]

K. Teng, Two nontrivial solutions for hemivariational inequalities driven by nonlocal elliptic operators,, \emph{Nonlinear Anal. RWA}, 14 (2013), 867.  doi: 10.1016/j.nonrwa.2012.08.008.  Google Scholar

[1]

Scott Nollet, Frederico Xavier. Global inversion via the Palais-Smale condition. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 17-28. doi: 10.3934/dcds.2002.8.17

[2]

Antonio Azzollini. On a functional satisfying a weak Palais-Smale condition. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1829-1840. doi: 10.3934/dcds.2014.34.1829

[3]

A. Azzollini. Erratum to: "On a functional satisfying a weak Palais-Smale condition". Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4987-4987. doi: 10.3934/dcds.2014.34.4987

[4]

Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105

[5]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[6]

To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694

[7]

Sami Aouaoui. A multiplicity result for some Kirchhoff-type equations involving exponential growth condition in $\mathbb{R}^2 $. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1351-1370. doi: 10.3934/cpaa.2016.15.1351

[8]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Variational problems of Herglotz type with time delay: DuBois--Reymond condition and Noether's first theorem. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4593-4610. doi: 10.3934/dcds.2015.35.4593

[9]

Augusto VisintiN. On the variational representation of monotone operators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

[10]

Jijiang Sun, Chun-Lei Tang. Resonance problems for Kirchhoff type equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2139-2154. doi: 10.3934/dcds.2013.33.2139

[11]

Yijing Sun, Yuxin Tan. Kirchhoff type equations with strong singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 181-193. doi: 10.3934/cpaa.2019010

[12]

François Gay-Balma, Darryl D. Holm, Tudor S. Ratiu. Variational principles for spin systems and the Kirchhoff rod. Journal of Geometric Mechanics, 2009, 1 (4) : 417-444. doi: 10.3934/jgm.2009.1.417

[13]

Renato Manfrin. On the global solvability of symmetric hyperbolic systems of Kirchhoff type. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 91-106. doi: 10.3934/dcds.1997.3.91

[14]

Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111

[15]

Xing Liu, Yijing Sun. Multiple positive solutions for Kirchhoff type problems with singularity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 721-733. doi: 10.3934/cpaa.2013.12.721

[16]

Wenjing Chen. Multiplicity of solutions for a fractional Kirchhoff type problem. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2009-2020. doi: 10.3934/cpaa.2015.14.2009

[17]

Pawan Kumar Mishra, Sarika Goyal, K. Sreenadh. Polyharmonic Kirchhoff type equations with singular exponential nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1689-1717. doi: 10.3934/cpaa.2016009

[18]

Cyril Joel Batkam, João R. Santos Júnior. Schrödinger-Kirchhoff-Poisson type systems. Communications on Pure & Applied Analysis, 2016, 15 (2) : 429-444. doi: 10.3934/cpaa.2016.15.429

[19]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[20]

Ewa Girejko, Luís Machado, Agnieszka B. Malinowska, Natália Martins. On consensus in the Cucker–Smale type model on isolated time scales. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 77-89. doi: 10.3934/dcdss.2018005

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]