March  2015, 14(2): 383-396. doi: 10.3934/cpaa.2015.14.383

Global solutions of a Keller--Segel system with saturated logarithmic sensitivity function

1. 

Department of Mathematics, Southwestern University of Finance and Economics, 555 Liutai Ave, Wenjiang, Chengdu, Sichuan 611130

Received  November 2013 Revised  September 2014 Published  December 2014

We study a Keller-Segel type chemotaxis model with a modified sensitivity function in a bounded domain $\Omega\subset \mathbb{R}^N$, $N\geq2$. The global existence of classical solutions to the fully parabolic system is established provided that the ratio of the chemotactic coefficient to the motility of cells is not too large.
Citation: Qi Wang. Global solutions of a Keller--Segel system with saturated logarithmic sensitivity function. Communications on Pure and Applied Analysis, 2015, 14 (2) : 383-396. doi: 10.3934/cpaa.2015.14.383
References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis, Teubner, Stuttgart, Leipzig, (1993), 9-126. doi: 10.1007/978-3-663-11336-2_1.

[2]

P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis, Advances in Mathematical Sciences and Applications, 9 (1999), 347-359.

[3]

M. D. Baker, P. M. Wolanin and J. B. Stock, Signal transduction in bacterial chemotaxis, Bioessays, 28 (2006), 9-22.

[4]

S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Bioscience, 56 (1983), 217-237. doi: 10.1016/0025-5564(81)90055-9.

[5]

D. Dormann and C. Weijer, Chemotactic cell movement during Dictyostelium development and gastrulation, Current Opinion in Genetics Development, 16 (2006), 367-373.

[6]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag-Berlin-New York, 1981.

[7]

D. Horstmann, From 1970 until now: the Keller-Segel model in Chemotaxis and its consequences I, Jahresber DMV, 105 (2003), 103-165.

[8]

D. Horstmann, From 1970 until now: the Keller-Segel model in Chemotaxis and its consequences II, Jahresber DMV, 106 (2003), 51-69.

[9]

T. Hillen and K. J. Painter, A user's guidence to PDE models for chemotaxis, Journal of Mathematical Biology, 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[10]

T. Hillen, K. J. Painter and C. Schmeiser, Global existence for Chemotaxis with finite sampling radius, Discrete Contin. Dyn. Syst-Series B, 7 (2007), 125-144. doi: 10.3934/dcdsb.2007.7.125.

[11]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxisi system, J. Diff. Equation, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022.

[12]

M. A. Herrero and J. J. L. Velazquez, Chemotactic collapse for the Keller-Segel model, Journal of Mathematical Biology, 35 (1996), 583-623. doi: 10.1007/s002850050049.

[13]

E. F. Keller and L. A. Segel, Inition of slime mold aggregation view as an instability, Journal of Theoratical Biology, 26 (1970), 399-415.

[14]

E. F. Keller and L. A. Segel, Model for Chemotaxis, Journal of Theoratical Biology, 30 (1971), 225-234.

[15]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A Theretical Analysis, Journal of Theoratical Biology, 30 (1971), 235-248.

[16]

T. Li and Z. A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009), 1522-1541. doi: 10.1137/09075161X.

[17]

R. Lui and Z. A. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models, Journal of Mathematical Biology, 61 (2010), 739-761. doi: 10.1007/s00285-009-0317-0.

[18]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, 1968.

[19]

T. Nagai and T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Soc. Appl., 8 (1997), 145-156.

[20]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.

[21]

T. Nagai, T. Senba and K. Yoshida, Global existence of solutions to the parabolic systems of chemotaxis, RIMS Kokyuroku, 1009 (1997), 22-28.

[22]

V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, Journal. Theor. Biol., 42 (1973), 63-105.

[23]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial Ekvac, 44 (2001), 441-469.

[24]

C. Stinner and M. Winkler, Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Analysis: Real World Applications, 12 (2011), 3727-3740. doi: 10.1016/j.nonrwa.2011.07.006.

[25]

Z. A. Wang, Mathematics of traveling waves in chemotaxis, Discrete Contin. Dyn. Syst.-Series B, 18 (2013), 601-641. doi: 10.3934/dcdsb.2013.18.601.

[26]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, Journal of Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008.

[27]

M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Mathematical Methods in the Applied Sciences, 34 (2011), 176-190. doi: 10.1002/mma.1346.

[28]

M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr, 283 (2010), 1664-1673. doi: 10.1002/mana.200810838.

[29]

A. Yagi, Norm behavior of solutions to a parabolic system of chemotaxis, Math. Jap, 45 (1997), 241-265.

show all references

References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis, Teubner, Stuttgart, Leipzig, (1993), 9-126. doi: 10.1007/978-3-663-11336-2_1.

[2]

P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis, Advances in Mathematical Sciences and Applications, 9 (1999), 347-359.

[3]

M. D. Baker, P. M. Wolanin and J. B. Stock, Signal transduction in bacterial chemotaxis, Bioessays, 28 (2006), 9-22.

[4]

S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Bioscience, 56 (1983), 217-237. doi: 10.1016/0025-5564(81)90055-9.

[5]

D. Dormann and C. Weijer, Chemotactic cell movement during Dictyostelium development and gastrulation, Current Opinion in Genetics Development, 16 (2006), 367-373.

[6]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag-Berlin-New York, 1981.

[7]

D. Horstmann, From 1970 until now: the Keller-Segel model in Chemotaxis and its consequences I, Jahresber DMV, 105 (2003), 103-165.

[8]

D. Horstmann, From 1970 until now: the Keller-Segel model in Chemotaxis and its consequences II, Jahresber DMV, 106 (2003), 51-69.

[9]

T. Hillen and K. J. Painter, A user's guidence to PDE models for chemotaxis, Journal of Mathematical Biology, 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[10]

T. Hillen, K. J. Painter and C. Schmeiser, Global existence for Chemotaxis with finite sampling radius, Discrete Contin. Dyn. Syst-Series B, 7 (2007), 125-144. doi: 10.3934/dcdsb.2007.7.125.

[11]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxisi system, J. Diff. Equation, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022.

[12]

M. A. Herrero and J. J. L. Velazquez, Chemotactic collapse for the Keller-Segel model, Journal of Mathematical Biology, 35 (1996), 583-623. doi: 10.1007/s002850050049.

[13]

E. F. Keller and L. A. Segel, Inition of slime mold aggregation view as an instability, Journal of Theoratical Biology, 26 (1970), 399-415.

[14]

E. F. Keller and L. A. Segel, Model for Chemotaxis, Journal of Theoratical Biology, 30 (1971), 225-234.

[15]

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A Theretical Analysis, Journal of Theoratical Biology, 30 (1971), 235-248.

[16]

T. Li and Z. A. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009), 1522-1541. doi: 10.1137/09075161X.

[17]

R. Lui and Z. A. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models, Journal of Mathematical Biology, 61 (2010), 739-761. doi: 10.1007/s00285-009-0317-0.

[18]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, 1968.

[19]

T. Nagai and T. Senba, Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. Math. Soc. Appl., 8 (1997), 145-156.

[20]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.

[21]

T. Nagai, T. Senba and K. Yoshida, Global existence of solutions to the parabolic systems of chemotaxis, RIMS Kokyuroku, 1009 (1997), 22-28.

[22]

V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, Journal. Theor. Biol., 42 (1973), 63-105.

[23]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial Ekvac, 44 (2001), 441-469.

[24]

C. Stinner and M. Winkler, Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Analysis: Real World Applications, 12 (2011), 3727-3740. doi: 10.1016/j.nonrwa.2011.07.006.

[25]

Z. A. Wang, Mathematics of traveling waves in chemotaxis, Discrete Contin. Dyn. Syst.-Series B, 18 (2013), 601-641. doi: 10.3934/dcdsb.2013.18.601.

[26]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, Journal of Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008.

[27]

M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Mathematical Methods in the Applied Sciences, 34 (2011), 176-190. doi: 10.1002/mma.1346.

[28]

M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr, 283 (2010), 1664-1673. doi: 10.1002/mana.200810838.

[29]

A. Yagi, Norm behavior of solutions to a parabolic system of chemotaxis, Math. Jap, 45 (1997), 241-265.

[1]

Guoqiang Ren, Heping Ma. Global existence in a chemotaxis system with singular sensitivity and signal production. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 343-360. doi: 10.3934/dcdsb.2021045

[2]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[3]

Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463

[4]

Youshan Tao, Lihe Wang, Zhi-An Wang. Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 821-845. doi: 10.3934/dcdsb.2013.18.821

[5]

Youshan Tao. Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2705-2722. doi: 10.3934/dcdsb.2013.18.2705

[6]

Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147

[7]

Xiangdong Zhao. Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5095-5100. doi: 10.3934/dcdsb.2020334

[8]

Chun Huang. Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop. Electronic Research Archive, 2021, 29 (5) : 3261-3279. doi: 10.3934/era.2021037

[9]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6155-6171. doi: 10.3934/dcdsb.2021011

[10]

T. Hillen, K. Painter, Christian Schmeiser. Global existence for chemotaxis with finite sampling radius. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 125-144. doi: 10.3934/dcdsb.2007.7.125

[11]

Guoqiang Ren, Bin Liu. Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3843-3883. doi: 10.3934/cpaa.2020170

[12]

Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure and Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050

[13]

Huanhuan Qiu, Shangjiang Guo. Global existence and stability in a two-species chemotaxis system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1569-1587. doi: 10.3934/dcdsb.2018220

[14]

Radek Erban, Hyung Ju Hwang. Global existence results for complex hyperbolic models of bacterial chemotaxis. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1239-1260. doi: 10.3934/dcdsb.2006.6.1239

[15]

Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180

[16]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[17]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[18]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[19]

Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093

[20]

Yue Pang, Xingchang Wang, Furong Wu. Global existence and blowup in infinite time for a fourth order wave equation with damping and logarithmic strain terms. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4439-4463. doi: 10.3934/dcdss.2021115

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (104)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]