-
Previous Article
Second order elliptic operators in $L^2$ with first order degeneration at the boundary and outward pointing drift
- CPAA Home
- This Issue
-
Next Article
Global solutions of a Keller--Segel system with saturated logarithmic sensitivity function
On the asymptotic stability of Volterra functional equations with vanishing delays
1. | Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR |
2. | Department of Mathematics and Statistics, Memorial University of Newfoundland, St.Johns, Newfoundland, A1C 5S7 |
References:
[1] |
A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Clarendon Press, Oxford, 2003.
doi: 10.1093/acprof:oso/9780198506546.001.0001. |
[2] |
H. Brunner, The numerical analysis of functional integral and integro-differential equations of Volterra type, Acta Numer., 13 (2004), 55-145.
doi: 10.1017/CBO9780511569975.002. |
[3] |
H. Brunner, Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays, Front. Math. China, 4 (2009), 3-22.
doi: 10.1007/s11464-009-0001-0. |
[4] |
H. Brunner and H. Liang, Stability of collocation methods for delay differential equations with vanishing delays, BIT Numer. Math., 50 (2010), 693-711.
doi: 10.1007/s10543-010-0285-1. |
[5] |
A. Iserles, On the generalized pantograph functional differential equation, Europ. J. Appl. Math., 4 (1993), 1-38.
doi: 10.1017/S0956792500000966. |
[6] |
A. Iserles and J. Terjéki, Stability and asymptotic stability of functional-differential equations, J. London Math. Soc., 51 (1995), 559-572.
doi: 10.1112/jlms/51.3.559. |
[7] |
T. Kato and J. B. McLeod, The functional-differential equation $y'(x)=ay(\lambda x)+by(x)$, Bull. Amer. Math. Soc., 77 (1970), 891-937. |
show all references
References:
[1] |
A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Clarendon Press, Oxford, 2003.
doi: 10.1093/acprof:oso/9780198506546.001.0001. |
[2] |
H. Brunner, The numerical analysis of functional integral and integro-differential equations of Volterra type, Acta Numer., 13 (2004), 55-145.
doi: 10.1017/CBO9780511569975.002. |
[3] |
H. Brunner, Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays, Front. Math. China, 4 (2009), 3-22.
doi: 10.1007/s11464-009-0001-0. |
[4] |
H. Brunner and H. Liang, Stability of collocation methods for delay differential equations with vanishing delays, BIT Numer. Math., 50 (2010), 693-711.
doi: 10.1007/s10543-010-0285-1. |
[5] |
A. Iserles, On the generalized pantograph functional differential equation, Europ. J. Appl. Math., 4 (1993), 1-38.
doi: 10.1017/S0956792500000966. |
[6] |
A. Iserles and J. Terjéki, Stability and asymptotic stability of functional-differential equations, J. London Math. Soc., 51 (1995), 559-572.
doi: 10.1112/jlms/51.3.559. |
[7] |
T. Kato and J. B. McLeod, The functional-differential equation $y'(x)=ay(\lambda x)+by(x)$, Bull. Amer. Math. Soc., 77 (1970), 891-937. |
[1] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3529-3539. doi: 10.3934/dcdss.2020432 |
[2] |
Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826 |
[3] |
T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure and Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277 |
[4] |
Noui Djaidja, Mostefa Nadir. Comparison between Taylor and perturbed method for Volterra integral equation of the first kind. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 487-493. doi: 10.3934/naco.2020039 |
[5] |
Kazuki Himoto, Hideaki Matsunaga. The limits of solutions of a linear delay integral equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3033-3048. doi: 10.3934/dcdsb.2020050 |
[6] |
Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123 |
[7] |
Dajana Conte, Raffaele D'Ambrosio, Beatrice Paternoster. On the stability of $\vartheta$-methods for stochastic Volterra integral equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2695-2708. doi: 10.3934/dcdsb.2018087 |
[8] |
T. Diogo, N. B. Franco, P. Lima. High order product integration methods for a Volterra integral equation with logarithmic singular kernel. Communications on Pure and Applied Analysis, 2004, 3 (2) : 217-235. doi: 10.3934/cpaa.2004.3.217 |
[9] |
Seiyed Hadi Abtahi, Hamidreza Rahimi, Maryam Mosleh. Solving fuzzy volterra-fredholm integral equation by fuzzy artificial neural network. Mathematical Foundations of Computing, 2021, 4 (3) : 209-219. doi: 10.3934/mfc.2021013 |
[10] |
S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173 |
[11] |
Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations and Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032 |
[12] |
Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727 |
[13] |
José Manuel Palacios. Orbital and asymptotic stability of a train of peakons for the Novikov equation. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2475-2518. doi: 10.3934/dcds.2020372 |
[14] |
Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991 |
[15] |
Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063 |
[16] |
Denis Matignon, Christophe Prieur. Asymptotic stability of Webster-Lokshin equation. Mathematical Control and Related Fields, 2014, 4 (4) : 481-500. doi: 10.3934/mcrf.2014.4.481 |
[17] |
M. R. Arias, R. Benítez. Properties of solutions for nonlinear Volterra integral equations. Conference Publications, 2003, 2003 (Special) : 42-47. doi: 10.3934/proc.2003.2003.42 |
[18] |
Dorota Bors, Andrzej Skowron, Stanisław Walczak. Systems described by Volterra type integral operators. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2401-2416. doi: 10.3934/dcdsb.2014.19.2401 |
[19] |
Hermann Brunner. On Volterra integral operators with highly oscillatory kernels. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 915-929. doi: 10.3934/dcds.2014.34.915 |
[20] |
Sergiu Aizicovici, Yimin Ding, N. S. Papageorgiou. Time dependent Volterra integral inclusions in Banach spaces. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 53-63. doi: 10.3934/dcds.1996.2.53 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]