• Previous Article
    Second order elliptic operators in $L^2$ with first order degeneration at the boundary and outward pointing drift
  • CPAA Home
  • This Issue
  • Next Article
    Global solutions of a Keller--Segel system with saturated logarithmic sensitivity function
March  2015, 14(2): 397-406. doi: 10.3934/cpaa.2015.14.397

On the asymptotic stability of Volterra functional equations with vanishing delays

1. 

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR

2. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St.Johns, Newfoundland, A1C 5S7

Received  November 2013 Revised  July 2014 Published  December 2014

We analyze the asymptotic stability of solutions of linear Volterra integral equations with general continuous convolution kernels and vanishing delays. The analysis is based on an extension of the variation-of-parameter formula for non-delay Volterra integral equations and on energy function techniques. The delay integral equations studied in this paper will be of interest in the (still open) stability analysis of numerical methods (e.g. collocation and Runge-Kutta-type methods) for Volterra integral equations with vanishing delays.
Citation: Hermann Brunner, Chunhua Ou. On the asymptotic stability of Volterra functional equations with vanishing delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 397-406. doi: 10.3934/cpaa.2015.14.397
References:
[1]

A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations,, Clarendon Press, (2003).  doi: 10.1093/acprof:oso/9780198506546.001.0001.  Google Scholar

[2]

H. Brunner, The numerical analysis of functional integral and integro-differential equations of Volterra type,, {\em Acta Numer.}, 13 (2004), 55.  doi: 10.1017/CBO9780511569975.002.  Google Scholar

[3]

H. Brunner, Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays,, {\em Front. Math. China}, 4 (2009), 3.  doi: 10.1007/s11464-009-0001-0.  Google Scholar

[4]

H. Brunner and H. Liang, Stability of collocation methods for delay differential equations with vanishing delays,, \emph{BIT Numer. Math.}, 50 (2010), 693.  doi: 10.1007/s10543-010-0285-1.  Google Scholar

[5]

A. Iserles, On the generalized pantograph functional differential equation,, \emph{Europ. J. Appl. Math.}, 4 (1993), 1.  doi: 10.1017/S0956792500000966.  Google Scholar

[6]

A. Iserles and J. Terjéki, Stability and asymptotic stability of functional-differential equations,, \emph{J. London Math. Soc.}, 51 (1995), 559.  doi: 10.1112/jlms/51.3.559.  Google Scholar

[7]

T. Kato and J. B. McLeod, The functional-differential equation $y'(x)=ay(\lambda x)+by(x)$,, \emph{Bull. Amer. Math. Soc.}, 77 (1970), 891.   Google Scholar

show all references

References:
[1]

A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations,, Clarendon Press, (2003).  doi: 10.1093/acprof:oso/9780198506546.001.0001.  Google Scholar

[2]

H. Brunner, The numerical analysis of functional integral and integro-differential equations of Volterra type,, {\em Acta Numer.}, 13 (2004), 55.  doi: 10.1017/CBO9780511569975.002.  Google Scholar

[3]

H. Brunner, Current work and open problems in the numerical analysis of Volterra functional equations with vanishing delays,, {\em Front. Math. China}, 4 (2009), 3.  doi: 10.1007/s11464-009-0001-0.  Google Scholar

[4]

H. Brunner and H. Liang, Stability of collocation methods for delay differential equations with vanishing delays,, \emph{BIT Numer. Math.}, 50 (2010), 693.  doi: 10.1007/s10543-010-0285-1.  Google Scholar

[5]

A. Iserles, On the generalized pantograph functional differential equation,, \emph{Europ. J. Appl. Math.}, 4 (1993), 1.  doi: 10.1017/S0956792500000966.  Google Scholar

[6]

A. Iserles and J. Terjéki, Stability and asymptotic stability of functional-differential equations,, \emph{J. London Math. Soc.}, 51 (1995), 559.  doi: 10.1112/jlms/51.3.559.  Google Scholar

[7]

T. Kato and J. B. McLeod, The functional-differential equation $y'(x)=ay(\lambda x)+by(x)$,, \emph{Bull. Amer. Math. Soc.}, 77 (1970), 891.   Google Scholar

[1]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[2]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[3]

Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123

[4]

Dajana Conte, Raffaele D'Ambrosio, Beatrice Paternoster. On the stability of $\vartheta$-methods for stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2695-2708. doi: 10.3934/dcdsb.2018087

[5]

T. Diogo, N. B. Franco, P. Lima. High order product integration methods for a Volterra integral equation with logarithmic singular kernel. Communications on Pure & Applied Analysis, 2004, 3 (2) : 217-235. doi: 10.3934/cpaa.2004.3.217

[6]

S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173

[7]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[8]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[9]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[10]

Denis Matignon, Christophe Prieur. Asymptotic stability of Webster-Lokshin equation. Mathematical Control & Related Fields, 2014, 4 (4) : 481-500. doi: 10.3934/mcrf.2014.4.481

[11]

Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2417-2442. doi: 10.3934/dcdsb.2018259

[12]

M. R. Arias, R. Benítez. Properties of solutions for nonlinear Volterra integral equations. Conference Publications, 2003, 2003 (Special) : 42-47. doi: 10.3934/proc.2003.2003.42

[13]

Dorota Bors, Andrzej Skowron, Stanisław Walczak. Systems described by Volterra type integral operators. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2401-2416. doi: 10.3934/dcdsb.2014.19.2401

[14]

Hermann Brunner. On Volterra integral operators with highly oscillatory kernels. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 915-929. doi: 10.3934/dcds.2014.34.915

[15]

Sergiu Aizicovici, Yimin Ding, N. S. Papageorgiou. Time dependent Volterra integral inclusions in Banach spaces. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 53-63. doi: 10.3934/dcds.1996.2.53

[16]

Azmy S. Ackleh, Keng Deng. Stability of a delay equation arising from a juvenile-adult model. Mathematical Biosciences & Engineering, 2010, 7 (4) : 729-737. doi: 10.3934/mbe.2010.7.729

[17]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[18]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[19]

Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 19-38. doi: 10.3934/dcdsb.2007.8.19

[20]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]