• Previous Article
    Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents
  • CPAA Home
  • This Issue
  • Next Article
    Second order elliptic operators in $L^2$ with first order degeneration at the boundary and outward pointing drift
March  2015, 14(2): 421-437. doi: 10.3934/cpaa.2015.14.421

On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point

1. 

School of Mathematics, Shandong University, Jinan, Shandong 250100, China, China

Received  December 2013 Revised  July 2014 Published  December 2014

This paper focuses on quasi-periodic perturbation of four dimensional nonlinear quasi-periodic system. Using the KAM method, the perturbed system can be reduced to a suitable normal form with zero as equilibrium point by a quasi-periodic transformation. Hence, the perturbed system has a quasi-periodic solution near the equilibrium point.
Citation: Wenhua Qiu, Jianguo Si. On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point. Communications on Pure & Applied Analysis, 2015, 14 (2) : 421-437. doi: 10.3934/cpaa.2015.14.421
References:
[1]

N. N. Bogoljubov, Y. A. Mitropolskii and A. M. Samoilenko, Methods Of Accelerated Convergence In Nonlinear Mechanics,, Springer, (1976).   Google Scholar

[2]

H. Her and J. You, Full measure reducibility for generic one-parameter family of quasiperiodic linear systems,, \emph{J. Dynam. Differential Equations}, 20 (2008), 831.  doi: 10.1007/s10884-008-9113-6.  Google Scholar

[3]

A. Jorba and C. Simó, On quasi-periodic perturbations of elliptic equilibrium points,, \emph{SIAM J. Math. Anal.}, 27 (1996), 1704.  doi: 10.1137/S0036141094276913.  Google Scholar

[4]

A. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients,, \emph{J. Differential Equations}, 98 (1992), 111.  doi: 10.1016/0022-0396(92)90107-X.  Google Scholar

[5]

J. Moser, Convergent series expansion for quasi-periodic motions,, \emph{Math. Ann.}, 169 (1967), 136.   Google Scholar

[6]

J. Xu, On Quasi-periodic perturbations of hyperbalic-type degeneate equilibrium point of a class of planar system,, \emph{Discrete and Continous Dynamical Systems}, 33 (2013), 2593.  doi: doi:10.3934/dcds.2013.33.2593.  Google Scholar

[7]

J. Xu, On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point,, \emph{J. Differential Equations}, 250 (2011), 551.  doi: 10.1016/j.jde.2010.09.030.  Google Scholar

[8]

J. Xu, Persistence of Floquet invariant tori for a class of non-conservative dynamical systems,, \emph{Proc. Amer. Math. Soc.}, 135 (2007), 805.  doi: 10.1090/S0002-9939-06-08529-7.  Google Scholar

[9]

J. Xu and Q. Zheng, On the reducibility of linear differential equations with quasiperiodic coefficients which are degenerate,, \emph{Proc. Amer. Math. Soc.}, 126 (1998), 1445.  doi: 10.1090/S0002-9939-98-04523-7.  Google Scholar

[10]

J. Xu and S. Jiang, Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under small perturbation,, \emph{Ergodic Theory and Dynamical Systems}, 31 (2011), 599.  doi: 10.1017/S0143385709001114.  Google Scholar

show all references

References:
[1]

N. N. Bogoljubov, Y. A. Mitropolskii and A. M. Samoilenko, Methods Of Accelerated Convergence In Nonlinear Mechanics,, Springer, (1976).   Google Scholar

[2]

H. Her and J. You, Full measure reducibility for generic one-parameter family of quasiperiodic linear systems,, \emph{J. Dynam. Differential Equations}, 20 (2008), 831.  doi: 10.1007/s10884-008-9113-6.  Google Scholar

[3]

A. Jorba and C. Simó, On quasi-periodic perturbations of elliptic equilibrium points,, \emph{SIAM J. Math. Anal.}, 27 (1996), 1704.  doi: 10.1137/S0036141094276913.  Google Scholar

[4]

A. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients,, \emph{J. Differential Equations}, 98 (1992), 111.  doi: 10.1016/0022-0396(92)90107-X.  Google Scholar

[5]

J. Moser, Convergent series expansion for quasi-periodic motions,, \emph{Math. Ann.}, 169 (1967), 136.   Google Scholar

[6]

J. Xu, On Quasi-periodic perturbations of hyperbalic-type degeneate equilibrium point of a class of planar system,, \emph{Discrete and Continous Dynamical Systems}, 33 (2013), 2593.  doi: doi:10.3934/dcds.2013.33.2593.  Google Scholar

[7]

J. Xu, On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point,, \emph{J. Differential Equations}, 250 (2011), 551.  doi: 10.1016/j.jde.2010.09.030.  Google Scholar

[8]

J. Xu, Persistence of Floquet invariant tori for a class of non-conservative dynamical systems,, \emph{Proc. Amer. Math. Soc.}, 135 (2007), 805.  doi: 10.1090/S0002-9939-06-08529-7.  Google Scholar

[9]

J. Xu and Q. Zheng, On the reducibility of linear differential equations with quasiperiodic coefficients which are degenerate,, \emph{Proc. Amer. Math. Soc.}, 126 (1998), 1445.  doi: 10.1090/S0002-9939-98-04523-7.  Google Scholar

[10]

J. Xu and S. Jiang, Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under small perturbation,, \emph{Ergodic Theory and Dynamical Systems}, 31 (2011), 599.  doi: 10.1017/S0143385709001114.  Google Scholar

[1]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[5]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[6]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[7]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[8]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[9]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[10]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[11]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[12]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[13]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[14]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[15]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[16]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[17]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[18]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[19]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[20]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]