March  2015, 14(2): 457-491. doi: 10.3934/cpaa.2015.14.457

Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay

1. 

Department of Mathematics and Statistics, College of Sciences, King Fahd University of Petroleum and Minerals, P.O. Box 5005, Dhahran 31261

2. 

Department of Mathematics and Statistics, College of Sciences, King Fahd University of Petroleum and Minerals, P.O.Box. 5005, Dhahran 31261, Saudi Arabia

Received  August 2014 Revised  October 2014 Published  December 2014

In this paper, we consider a class of second order abstract linear hyperbolic equations with infinite memory and distributed time delay. Under appropriate assumptions on the infinite memory and distributed time delay convolution kernels, we prove well-posedness and stability of the system. Our estimation shows that the dissipation resulting from the infinite memory alone guarantees the asymptotic stability of the system in spite of the presence of distributed time delay. The decay rate of solutions is found explicitly in terms of the growth at infinity of the infinite memory and the distributed time delay convolution kernels. An application of our approach to the discrete time delay case is also given.
Citation: Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure & Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457
References:
[1]

M. Aassila, M. M. Cavalcanti and V. N. Domingos Cavalcanti, Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term,, \emph{Calc. Var. Partial Differential Equations}, 15 (2002), 155.  doi: 10.1007/s005260100096.  Google Scholar

[2]

M. Aassila, M. M. Cavalcanti and J. A. Soriano, Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain,, \emph{SIAM J. Control Optim.}, 38 (2000), 1581.  doi: 10.1137/S0363012998344981.  Google Scholar

[3]

K. Ammari, S. Nicaise and C. Pignotti, Feedback boundary stabilization of wave equations with interior delay,, \emph{Systems Cont. Letters}, 59 (2010), 623.  doi: 10.1016/j.sysconle.2010.07.007.  Google Scholar

[4]

T. A. Apalara, S. A. Messaoudi and M. I. Mustafa, Energy decay in thermoelasticity type III with viscoelastic damping and delay term,, \emph{Elect. J. Diff. Equa.}, 2012 (2012), 1.   Google Scholar

[5]

A. Benaissa, A. K. Benaissa and S. A. Messaoudi, Global existence and energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks,, \emph{J. Math. Phys.}, 53 (2012), 1.   Google Scholar

[6]

S. Berrimi and S. A. Messaoudi, Existence and decay of solutions of a viscoelastic equation with a nonlinear source,, \emph{Nonlinear Analysis T. M. A.}, 64 (2006), 2314.  doi: 10.1016/j.na.2005.08.015.  Google Scholar

[7]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems,, \emph{Nonlinear Analysis T. M. A.}, 68 (2008), 177.  doi: 10.1016/j.na.2006.10.040.  Google Scholar

[8]

M. M. Cavalcanti, V. N. Domingos and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping,, \emph{Elect. J. Diff. Equa.}, 44 (2002), 1.   Google Scholar

[9]

M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation,, \emph{SIAM J. Control Optim.}, 42 (2003), 1310.  doi: 10.1137/S0363012902408010.  Google Scholar

[10]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity,, \emph{Asymptotic Anal.}, 46 (2006), 251.   Google Scholar

[11]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, \emph{Arch. Rational Mech. Anal.}, 37 (1970), 297.   Google Scholar

[12]

R. Datko, Two questions concerning the boundary control of certain elastic systems,, \emph{J. Diff. Equa.}, 1 (1991), 27.  doi: 10.1016/0022-0396(91)90062-E.  Google Scholar

[13]

R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations,, \emph{SIAM J. Control Optim.}, 1 (1986), 152.  doi: 10.1137/0324007.  Google Scholar

[14]

M. Fabrizio and B. Lazzari, On the existence and asymptotic stability of solutions for linear viscoelastic solids,, \emph{Arch. Rational Mech. Anal.}, 116 (1991), 139.  doi: 10.1007/BF00375589.  Google Scholar

[15]

E. Fridman, S. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with time-dependent delay,, \emph{SIAM J. Control Optim.}, 8 (2010), 5028.  doi: 10.1137/090762105.  Google Scholar

[16]

C. Giorgi, J. E. Muñoz Rivera and V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity,, \emph{J. Math. Anal. Appl.}, 260 (2001), 83.  doi: 10.1006/jmaa.2001.7437.  Google Scholar

[17]

A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory,, \emph{J. Math. Anal. Appl.}, 382 (2011), 748.  doi: 10.1016/j.jmaa.2011.04.079.  Google Scholar

[18]

A. Guesmia, Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay,, \emph{IMA J. Mathematical Control and Information}, 30 (2013), 507.  doi: 10.1093/imamci/dns039.  Google Scholar

[19]

A. Guesmia, Some well-posedness and general stability results in Timoshenko systems with infinite memory and distributed time delay,, \emph{J. Math. Phys.}, ().   Google Scholar

[20]

A. Guesmia and S. Messaoudi, General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping,, \emph{Math. Meth. Appl. Sci.}, 32 (2009), 2102.  doi: 10.1002/mma.1125.  Google Scholar

[21]

A. Guesmia and S. Messaoudi, A general decay result for a viscoelastic equation in the presence of past and finite history memories,, \emph{Nonlinear Analysis T. M. A.}, 13 (2012), 476.  doi: 10.1016/j.nonrwa.2011.08.004.  Google Scholar

[22]

A. Guesmia, S. Messaoudi and B. Said-Houari, General decay of solutions of a nonlinear system of viscoelastic wave equations,, \emph{Nonl. Diff. Equa. Appl.}, 18 (2011), 659.  doi: 10.1007/s00030-011-0112-7.  Google Scholar

[23]

A. Guesmia, S. Messaoudi and A. Soufyane, On the stabilization for a linear Timoshenko system with infinite history and applications to the coupled Timoshenko-heat systems,, \emph{Elect. J. Diff. Equa.}, 2012 (2012), 1.   Google Scholar

[24]

M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay,, \emph{Z. Angew. Math. Phys.}, 62 (2011), 1065.  doi: 10.1007/s00033-011-0145-0.  Google Scholar

[25]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, Masson-John Wiley, (1994).   Google Scholar

[26]

Z. Liu and S. Zheng, On the exponential stability of linear viscoelasticity and thermoviscoelasticity,, \emph{Quart. Appl. Math.}, 54 (1996), 21.   Google Scholar

[27]

S. A. Messaoudi, General decay of solutions of a viscoelastic equation,, \emph{J. Math. Anal. Appl.}, 341 (2008), 1457.  doi: 10.1016/j.jmaa.2007.11.048.  Google Scholar

[28]

S. A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a nonlinear source,, \emph{Nonlinear Analysis T. M. A.}, 69 (2008), 2589.  doi: 10.1016/j.na.2007.08.035.  Google Scholar

[29]

S. A. Messaoudi and N. E. Tatar, Global existence and asymptotic behavior for a nonlinear viscoelastic problem,, \emph{Math. Meth. Sci. Res. J.}, 4 (2003), 136.   Google Scholar

[30]

S. A. Messaoudi and N. E. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem,, \emph{Math. Meth. Appl. Sci.}, 30 (2007), 665.  doi: 10.1002/mma.804.  Google Scholar

[31]

J. E. Muñoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory,, \emph{J. Math. Anal. Appl.}, 326 (2007), 691.  doi: 10.1016/j.jmaa.2006.03.022.  Google Scholar

[32]

M. I. Mustafa, Exponential decay in thermoelastic systems with boundary delay,, \emph{J. Abst. Diff. Equa. Appl.}, 2 (2011), 1.   Google Scholar

[33]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks,, \emph{SIAM J. Control Optim.}, 5 (2006), 1561.  doi: 10.1137/060648891.  Google Scholar

[34]

S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay,, \emph{Diff. Integral Equa.}, 9-10 (2008), 9.   Google Scholar

[35]

S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay,, \emph{Elect. J. Diff. Equa.}, 41 (2011), 1.   Google Scholar

[36]

S. Nicaise, C. Pignotti and J. Valein, Exponential stability of the wave equation with boundary time-varying delay,, \emph{Disc. Cont. Dyna. Syst. Series S}, 3 (2011), 693.  doi: 10.3934/dcdss.2011.4.693.  Google Scholar

[37]

S. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with delay,, \emph{ESAIM Control Optim.}, 2 (2010), 420.  doi: 10.1051/cocv/2009007.  Google Scholar

[38]

S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays,, \emph{Disc. Cont. Dyna. Syst. Series S}, 2 (2009), 559.  doi: 10.3934/dcdss.2009.2.559.  Google Scholar

[39]

V. Pata, Exponential stability in linear viscoelasticity,, \emph{Quart. Appl. Math.}, 3 (2006), 499.  doi: 10.1007/s00032-009-0098-3.  Google Scholar

[40]

V. Pata, Exponential stability in linear viscoelasticity with almost flat memory kernels,, \emph{Commun. Pure. Appl. Anal.}, 9 (2010), 721.  doi: 10.3934/cpaa.2010.9.721.  Google Scholar

[41]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[42]

B. Said-Houari, A stability result for a Timoshenko system with past history and a delay term in the internal feedback,, \emph{Dynamic Systems and Applications}, 20 (2011), 327.   Google Scholar

[43]

B. Said-Houari and F. Falcão Nascimento, Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction,, \emph{Comm. Pure Appl. Anal.}, 12 (2013), 375.  doi: 10.3934/cpaa.2013.12.375.  Google Scholar

[44]

N. E. Tatar, Exponential decay for a viscoelastic problem with a singular kernel,, \emph{Z. angew. Math. Phys.}, 60 (2009), 640.  doi: 10.1007/s00033-008-8030-1.  Google Scholar

[45]

N. E. Tatar, On a large class of kernels yielding exponential stability in viscoelasticity,, \emph{Appl. Math. Comp.}, 215 (2009), 2298.  doi: 10.1016/j.amc.2009.08.034.  Google Scholar

[46]

N. E. Tatar, How far can relaxation functions be increasing in viscoelastic problems?, \emph{Appl. Math. Letters}, 22 (2009), 336.  doi: 10.1016/j.aml.2008.04.005.  Google Scholar

[47]

N. E. Tatar, A new class of kernels leading to an arbitrary decay in viscoelasticity,, \emph{Mediterr. J. Math.}, 6 (2010), 139.  doi: 10.1007/s00009-012-0177-5.  Google Scholar

[48]

N. E. Tatar, On a perturbed kernel in viscoelasticity,, \emph{Appl. Math. Letters}, 24 (2011), 766.  doi: 10.1016/j.aml.2010.12.035.  Google Scholar

[49]

N. E. Tatar, Arbitrary decays in linear viscoelasticity,, \emph{J. Math. Phys.}, 52 (2011), 1.  doi: 10.1063/1.3533766.  Google Scholar

[50]

N. E. Tatar, Uniform decay in viscoelasticity for kernels with small non-decreasingness zones,, \emph{Appl. Math. Comp.}, 218 (2012), 7939.  doi: 10.1016/j.amc.2012.02.012.  Google Scholar

[51]

N. E. Tatar, Oscillating kernels and arbitrary decays in viscoelasticity,, \emph{Math. Nachr.}, 285 (2012), 1130.  doi: 10.1002/mana.201000053.  Google Scholar

[52]

A. Vicente, Wave equation with acoustic/memory boundary conditions,, \emph{Bol. Soc. Parana. Mat.}, 27 (2009), 29.  doi: 10.5269/bspm.v27i1.9066.  Google Scholar

show all references

References:
[1]

M. Aassila, M. M. Cavalcanti and V. N. Domingos Cavalcanti, Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term,, \emph{Calc. Var. Partial Differential Equations}, 15 (2002), 155.  doi: 10.1007/s005260100096.  Google Scholar

[2]

M. Aassila, M. M. Cavalcanti and J. A. Soriano, Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain,, \emph{SIAM J. Control Optim.}, 38 (2000), 1581.  doi: 10.1137/S0363012998344981.  Google Scholar

[3]

K. Ammari, S. Nicaise and C. Pignotti, Feedback boundary stabilization of wave equations with interior delay,, \emph{Systems Cont. Letters}, 59 (2010), 623.  doi: 10.1016/j.sysconle.2010.07.007.  Google Scholar

[4]

T. A. Apalara, S. A. Messaoudi and M. I. Mustafa, Energy decay in thermoelasticity type III with viscoelastic damping and delay term,, \emph{Elect. J. Diff. Equa.}, 2012 (2012), 1.   Google Scholar

[5]

A. Benaissa, A. K. Benaissa and S. A. Messaoudi, Global existence and energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks,, \emph{J. Math. Phys.}, 53 (2012), 1.   Google Scholar

[6]

S. Berrimi and S. A. Messaoudi, Existence and decay of solutions of a viscoelastic equation with a nonlinear source,, \emph{Nonlinear Analysis T. M. A.}, 64 (2006), 2314.  doi: 10.1016/j.na.2005.08.015.  Google Scholar

[7]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems,, \emph{Nonlinear Analysis T. M. A.}, 68 (2008), 177.  doi: 10.1016/j.na.2006.10.040.  Google Scholar

[8]

M. M. Cavalcanti, V. N. Domingos and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping,, \emph{Elect. J. Diff. Equa.}, 44 (2002), 1.   Google Scholar

[9]

M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation,, \emph{SIAM J. Control Optim.}, 42 (2003), 1310.  doi: 10.1137/S0363012902408010.  Google Scholar

[10]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity,, \emph{Asymptotic Anal.}, 46 (2006), 251.   Google Scholar

[11]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, \emph{Arch. Rational Mech. Anal.}, 37 (1970), 297.   Google Scholar

[12]

R. Datko, Two questions concerning the boundary control of certain elastic systems,, \emph{J. Diff. Equa.}, 1 (1991), 27.  doi: 10.1016/0022-0396(91)90062-E.  Google Scholar

[13]

R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations,, \emph{SIAM J. Control Optim.}, 1 (1986), 152.  doi: 10.1137/0324007.  Google Scholar

[14]

M. Fabrizio and B. Lazzari, On the existence and asymptotic stability of solutions for linear viscoelastic solids,, \emph{Arch. Rational Mech. Anal.}, 116 (1991), 139.  doi: 10.1007/BF00375589.  Google Scholar

[15]

E. Fridman, S. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with time-dependent delay,, \emph{SIAM J. Control Optim.}, 8 (2010), 5028.  doi: 10.1137/090762105.  Google Scholar

[16]

C. Giorgi, J. E. Muñoz Rivera and V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity,, \emph{J. Math. Anal. Appl.}, 260 (2001), 83.  doi: 10.1006/jmaa.2001.7437.  Google Scholar

[17]

A. Guesmia, Asymptotic stability of abstract dissipative systems with infinite memory,, \emph{J. Math. Anal. Appl.}, 382 (2011), 748.  doi: 10.1016/j.jmaa.2011.04.079.  Google Scholar

[18]

A. Guesmia, Well-posedness and exponential stability of an abstract evolution equation with infinite memory and time delay,, \emph{IMA J. Mathematical Control and Information}, 30 (2013), 507.  doi: 10.1093/imamci/dns039.  Google Scholar

[19]

A. Guesmia, Some well-posedness and general stability results in Timoshenko systems with infinite memory and distributed time delay,, \emph{J. Math. Phys.}, ().   Google Scholar

[20]

A. Guesmia and S. Messaoudi, General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping,, \emph{Math. Meth. Appl. Sci.}, 32 (2009), 2102.  doi: 10.1002/mma.1125.  Google Scholar

[21]

A. Guesmia and S. Messaoudi, A general decay result for a viscoelastic equation in the presence of past and finite history memories,, \emph{Nonlinear Analysis T. M. A.}, 13 (2012), 476.  doi: 10.1016/j.nonrwa.2011.08.004.  Google Scholar

[22]

A. Guesmia, S. Messaoudi and B. Said-Houari, General decay of solutions of a nonlinear system of viscoelastic wave equations,, \emph{Nonl. Diff. Equa. Appl.}, 18 (2011), 659.  doi: 10.1007/s00030-011-0112-7.  Google Scholar

[23]

A. Guesmia, S. Messaoudi and A. Soufyane, On the stabilization for a linear Timoshenko system with infinite history and applications to the coupled Timoshenko-heat systems,, \emph{Elect. J. Diff. Equa.}, 2012 (2012), 1.   Google Scholar

[24]

M. Kirane and B. Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay,, \emph{Z. Angew. Math. Phys.}, 62 (2011), 1065.  doi: 10.1007/s00033-011-0145-0.  Google Scholar

[25]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,, Masson-John Wiley, (1994).   Google Scholar

[26]

Z. Liu and S. Zheng, On the exponential stability of linear viscoelasticity and thermoviscoelasticity,, \emph{Quart. Appl. Math.}, 54 (1996), 21.   Google Scholar

[27]

S. A. Messaoudi, General decay of solutions of a viscoelastic equation,, \emph{J. Math. Anal. Appl.}, 341 (2008), 1457.  doi: 10.1016/j.jmaa.2007.11.048.  Google Scholar

[28]

S. A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a nonlinear source,, \emph{Nonlinear Analysis T. M. A.}, 69 (2008), 2589.  doi: 10.1016/j.na.2007.08.035.  Google Scholar

[29]

S. A. Messaoudi and N. E. Tatar, Global existence and asymptotic behavior for a nonlinear viscoelastic problem,, \emph{Math. Meth. Sci. Res. J.}, 4 (2003), 136.   Google Scholar

[30]

S. A. Messaoudi and N. E. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem,, \emph{Math. Meth. Appl. Sci.}, 30 (2007), 665.  doi: 10.1002/mma.804.  Google Scholar

[31]

J. E. Muñoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory,, \emph{J. Math. Anal. Appl.}, 326 (2007), 691.  doi: 10.1016/j.jmaa.2006.03.022.  Google Scholar

[32]

M. I. Mustafa, Exponential decay in thermoelastic systems with boundary delay,, \emph{J. Abst. Diff. Equa. Appl.}, 2 (2011), 1.   Google Scholar

[33]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks,, \emph{SIAM J. Control Optim.}, 5 (2006), 1561.  doi: 10.1137/060648891.  Google Scholar

[34]

S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay,, \emph{Diff. Integral Equa.}, 9-10 (2008), 9.   Google Scholar

[35]

S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay,, \emph{Elect. J. Diff. Equa.}, 41 (2011), 1.   Google Scholar

[36]

S. Nicaise, C. Pignotti and J. Valein, Exponential stability of the wave equation with boundary time-varying delay,, \emph{Disc. Cont. Dyna. Syst. Series S}, 3 (2011), 693.  doi: 10.3934/dcdss.2011.4.693.  Google Scholar

[37]

S. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with delay,, \emph{ESAIM Control Optim.}, 2 (2010), 420.  doi: 10.1051/cocv/2009007.  Google Scholar

[38]

S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays,, \emph{Disc. Cont. Dyna. Syst. Series S}, 2 (2009), 559.  doi: 10.3934/dcdss.2009.2.559.  Google Scholar

[39]

V. Pata, Exponential stability in linear viscoelasticity,, \emph{Quart. Appl. Math.}, 3 (2006), 499.  doi: 10.1007/s00032-009-0098-3.  Google Scholar

[40]

V. Pata, Exponential stability in linear viscoelasticity with almost flat memory kernels,, \emph{Commun. Pure. Appl. Anal.}, 9 (2010), 721.  doi: 10.3934/cpaa.2010.9.721.  Google Scholar

[41]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[42]

B. Said-Houari, A stability result for a Timoshenko system with past history and a delay term in the internal feedback,, \emph{Dynamic Systems and Applications}, 20 (2011), 327.   Google Scholar

[43]

B. Said-Houari and F. Falcão Nascimento, Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction,, \emph{Comm. Pure Appl. Anal.}, 12 (2013), 375.  doi: 10.3934/cpaa.2013.12.375.  Google Scholar

[44]

N. E. Tatar, Exponential decay for a viscoelastic problem with a singular kernel,, \emph{Z. angew. Math. Phys.}, 60 (2009), 640.  doi: 10.1007/s00033-008-8030-1.  Google Scholar

[45]

N. E. Tatar, On a large class of kernels yielding exponential stability in viscoelasticity,, \emph{Appl. Math. Comp.}, 215 (2009), 2298.  doi: 10.1016/j.amc.2009.08.034.  Google Scholar

[46]

N. E. Tatar, How far can relaxation functions be increasing in viscoelastic problems?, \emph{Appl. Math. Letters}, 22 (2009), 336.  doi: 10.1016/j.aml.2008.04.005.  Google Scholar

[47]

N. E. Tatar, A new class of kernels leading to an arbitrary decay in viscoelasticity,, \emph{Mediterr. J. Math.}, 6 (2010), 139.  doi: 10.1007/s00009-012-0177-5.  Google Scholar

[48]

N. E. Tatar, On a perturbed kernel in viscoelasticity,, \emph{Appl. Math. Letters}, 24 (2011), 766.  doi: 10.1016/j.aml.2010.12.035.  Google Scholar

[49]

N. E. Tatar, Arbitrary decays in linear viscoelasticity,, \emph{J. Math. Phys.}, 52 (2011), 1.  doi: 10.1063/1.3533766.  Google Scholar

[50]

N. E. Tatar, Uniform decay in viscoelasticity for kernels with small non-decreasingness zones,, \emph{Appl. Math. Comp.}, 218 (2012), 7939.  doi: 10.1016/j.amc.2012.02.012.  Google Scholar

[51]

N. E. Tatar, Oscillating kernels and arbitrary decays in viscoelasticity,, \emph{Math. Nachr.}, 285 (2012), 1130.  doi: 10.1002/mana.201000053.  Google Scholar

[52]

A. Vicente, Wave equation with acoustic/memory boundary conditions,, \emph{Bol. Soc. Parana. Mat.}, 27 (2009), 29.  doi: 10.5269/bspm.v27i1.9066.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[5]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[6]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[7]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[8]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[9]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[10]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[11]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[12]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[13]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[14]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[15]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[16]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[17]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[18]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[19]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[20]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]