January  2015, 14(1): 51-62. doi: 10.3934/cpaa.2015.14.51

On the validity of the Euler-Lagrange system

1. 

Università del Sannio, Piazza Arechi II - 82100 Benevento

2. 

Mathematical Institute, 24–29 St Giles’, University of Oxford, OX1 3LB Oxford

3. 

Dipartimento di Matematica e Appl. “R. Caccioppoli”, Via Cintia- Monte S.Angelo, 80126 Napoli

Received  February 2014 Revised  March 2014 Published  September 2014

The minimizers of convex integral functionals of the form \begin{eqnarray} \mathfrak{F} (v, \Omega) = \int_{\Omega} F (Dv (x)) dx, \end{eqnarray} defined on Sobolev mappings $v$ in $W^{1,1}_{g}(\Omega R^N)$ are characterized as the energy solutions to the Euler--Lagrange system for $\mathfrak{F}$. We assume that the integrands $F: R^{N\times n} \to R$ are $C^1$, convex and super--linear at infinity, and the boundary datum $g \in W^{1,1}(\Omega, R^N)$ must satisfy $F(sDg) \in L^1(\Omega )$ for some number $s>1$.
Citation: Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli. On the validity of the Euler-Lagrange system. Communications on Pure & Applied Analysis, 2015, 14 (1) : 51-62. doi: 10.3934/cpaa.2015.14.51
References:
[1]

E. Acerbi and N. Fusco, Partial regularity under anisotropic $(p, q)$ growth conditions, J. Diff. Eq., 107 (1994), 46-67. doi: 10.1006/jdeq.1994.1002.  Google Scholar

[2]

J. J. Alibert and G. Bouchitté, Non-uniform integrability and generalized Young measures, J. Convex Anal., 4 (1997), 129-147.  Google Scholar

[3]

J. M. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Ration. Mech. Anal., 90 (1985), 325-388. doi: 10.1007/BF00276295.  Google Scholar

[4]

M. Bildhauer, Convex Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions, Lecture Notes in Mathematics, 1818. Springer-Verlag, Berlin, 2003. doi: 10.1007/b12308.  Google Scholar

[5]

G. Bonfanti, A. Cellina and M. Mazzola, The higher integrability and the validity of the Euler-Lagrange equation for solutions to variational problems, SIAM J. Control Optim., 50 (2012), 888-899. doi: 10.1137/110820890.  Google Scholar

[6]

G. Bonfanti and A. Cellina, The nonoccurrence of the Lavrentiev phenomenon for a class of variational functionals, SIAM J. Control Optim., 51 (2013), 1639-1650. doi: 10.1137/12086618X.  Google Scholar

[7]

M. Carozza, J. Kristensen and A. Passarelli di Napoli, Higher differentiability of minimizers of convex variational integrals, Ann. Inst. Henri Poincaré, Anal. Non Linaire, 28 (2011), 395-411. doi: 10.1016/j.anihpc.2011.02.005.  Google Scholar

[8]

M. Carozza, J. Kristensen and A. Passarelli di Napoli, Regularity of minimizers of autonomous convex variational integrals,, \emph{Ann. Sc. Norm. Super. Pisa Cl. Sci. (V)}, ().   Google Scholar

[9]

M. Carozza, G. Moscariello and A. Passarelli di Napoli, Regularity results via duality for minimizers of degenerate functionals, Asympt. Anal., 44 (2005), 221-235.  Google Scholar

[10]

M. Carozza and A. Passarelli di Napoli, Regularity for minimizers of degenerate elliptic functionals, J. Nonlinear Convex Anal., 7 (2006), 375-383.  Google Scholar

[11]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Applied Mathematics 28, SIAM, Philadelphia, 1999. doi: 10.1137/1.9781611971088.  Google Scholar

[12]

L. Esposito, F. Leonetti and G. Mingione, Sharp higher integrability for minimizers of integral functionals with $(p, q)$ growth, J. Differential Equations, 204 (2004), 5-55. doi: 10.1016/j.jde.2003.11.007.  Google Scholar

[13]

L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with $(p,q)$ growth, Forum Mathematicum, 14 (2002), 245-272. doi: 10.1515/form.2002.011.  Google Scholar

[14]

I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 309-338. doi: 10.1016/S0294-1449(97)80139-4.  Google Scholar

[15]

M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math., 59 (1987), 245-248. doi: 10.1007/BF01158049.  Google Scholar

[16]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific, 2003. doi: 10.1142/9789812795557.  Google Scholar

[17]

T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math., 454 (1994), 143-161. doi: 10.1515/crll.1994.454.143.  Google Scholar

[18]

G. Kresin and V. Maz'ya, Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems, Mathematical Surveys and Monographs 183, American Mathematical Society, Providence, RI, 2012.  Google Scholar

[19]

J. Kristensen and F. Rindler, Characterization of generalized gradient Young measures generated by sequences in $W^{1,1}$ and $\BV$, Arch. Ration. Mech. Anal., 197 (2010), 539-598. Erratum: ibid 203 (2012), 693-700. Google Scholar

[20]

J. Kristensen and G. Mingione, The singular set of minima of integral functionals, Arch. Ration. Mech. Anal., 180 (2006), 331-398. doi: 10.1007/s00205-005-0402-5.  Google Scholar

[21]

J. Kristensen and G. Mingione, Boundary regularity in variational problems, Arch. Ration. Mech. Anal., 198 (2010), 369-455. doi: 10.1007/s00205-010-0294-x.  Google Scholar

[22]

J. L. Lewis, On very weak solutions of certain elliptic systems, Comm. Partial Differential Equations, 18 (1993), 1515-1537. doi: 10.1080/03605309308820984.  Google Scholar

[23]

P. Marcellini, Un example de solution discontinue d'un probéme variationel dans le cas scalaire,, Preprint Ist. U. Dini, (): 1987.   Google Scholar

[24]

P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non-standard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), 267-284. doi: 10.1007/BF00251503.  Google Scholar

[25]

P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Cl. Sci., 23 (1996), 1-25.  Google Scholar

[26]

P. Marcellini and G. Papi, Nonlinear elliptic systems with general growth, J. Diff. Eq., 221 (2006), 412-443. doi: 10.1016/j.jde.2004.11.011.  Google Scholar

[27]

G. Mingione, Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math., 51 (2006), 355-426. doi: 10.1007/s10778-006-0110-3.  Google Scholar

[28]

A. Passarelli di Napoli and F. Siepe, A regularity result for a class of anisotropic systems, Rend. Ist. Mat di Trieste, (1997), 13-31.  Google Scholar

[29]

J. Serrin, Pathological solutions of elliptic differential equations, Ann. Sc. Norm. Sup. Cl. Sci., 18 (1964), 385-387.  Google Scholar

[30]

V. Šverák and X. Yan, Non-Lipschitz minimizers of smooth uniformly convex variational integrals, Proc. Nat. Acad. Sci. USA, 99 (2002), 15269-15276. doi: 10.1073/pnas.222494699.  Google Scholar

[31]

V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116.  Google Scholar

[32]

W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Maths. 120, Springer-Verlag, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

show all references

References:
[1]

E. Acerbi and N. Fusco, Partial regularity under anisotropic $(p, q)$ growth conditions, J. Diff. Eq., 107 (1994), 46-67. doi: 10.1006/jdeq.1994.1002.  Google Scholar

[2]

J. J. Alibert and G. Bouchitté, Non-uniform integrability and generalized Young measures, J. Convex Anal., 4 (1997), 129-147.  Google Scholar

[3]

J. M. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Ration. Mech. Anal., 90 (1985), 325-388. doi: 10.1007/BF00276295.  Google Scholar

[4]

M. Bildhauer, Convex Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions, Lecture Notes in Mathematics, 1818. Springer-Verlag, Berlin, 2003. doi: 10.1007/b12308.  Google Scholar

[5]

G. Bonfanti, A. Cellina and M. Mazzola, The higher integrability and the validity of the Euler-Lagrange equation for solutions to variational problems, SIAM J. Control Optim., 50 (2012), 888-899. doi: 10.1137/110820890.  Google Scholar

[6]

G. Bonfanti and A. Cellina, The nonoccurrence of the Lavrentiev phenomenon for a class of variational functionals, SIAM J. Control Optim., 51 (2013), 1639-1650. doi: 10.1137/12086618X.  Google Scholar

[7]

M. Carozza, J. Kristensen and A. Passarelli di Napoli, Higher differentiability of minimizers of convex variational integrals, Ann. Inst. Henri Poincaré, Anal. Non Linaire, 28 (2011), 395-411. doi: 10.1016/j.anihpc.2011.02.005.  Google Scholar

[8]

M. Carozza, J. Kristensen and A. Passarelli di Napoli, Regularity of minimizers of autonomous convex variational integrals,, \emph{Ann. Sc. Norm. Super. Pisa Cl. Sci. (V)}, ().   Google Scholar

[9]

M. Carozza, G. Moscariello and A. Passarelli di Napoli, Regularity results via duality for minimizers of degenerate functionals, Asympt. Anal., 44 (2005), 221-235.  Google Scholar

[10]

M. Carozza and A. Passarelli di Napoli, Regularity for minimizers of degenerate elliptic functionals, J. Nonlinear Convex Anal., 7 (2006), 375-383.  Google Scholar

[11]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Applied Mathematics 28, SIAM, Philadelphia, 1999. doi: 10.1137/1.9781611971088.  Google Scholar

[12]

L. Esposito, F. Leonetti and G. Mingione, Sharp higher integrability for minimizers of integral functionals with $(p, q)$ growth, J. Differential Equations, 204 (2004), 5-55. doi: 10.1016/j.jde.2003.11.007.  Google Scholar

[13]

L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with $(p,q)$ growth, Forum Mathematicum, 14 (2002), 245-272. doi: 10.1515/form.2002.011.  Google Scholar

[14]

I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 309-338. doi: 10.1016/S0294-1449(97)80139-4.  Google Scholar

[15]

M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math., 59 (1987), 245-248. doi: 10.1007/BF01158049.  Google Scholar

[16]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific, 2003. doi: 10.1142/9789812795557.  Google Scholar

[17]

T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math., 454 (1994), 143-161. doi: 10.1515/crll.1994.454.143.  Google Scholar

[18]

G. Kresin and V. Maz'ya, Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems, Mathematical Surveys and Monographs 183, American Mathematical Society, Providence, RI, 2012.  Google Scholar

[19]

J. Kristensen and F. Rindler, Characterization of generalized gradient Young measures generated by sequences in $W^{1,1}$ and $\BV$, Arch. Ration. Mech. Anal., 197 (2010), 539-598. Erratum: ibid 203 (2012), 693-700. Google Scholar

[20]

J. Kristensen and G. Mingione, The singular set of minima of integral functionals, Arch. Ration. Mech. Anal., 180 (2006), 331-398. doi: 10.1007/s00205-005-0402-5.  Google Scholar

[21]

J. Kristensen and G. Mingione, Boundary regularity in variational problems, Arch. Ration. Mech. Anal., 198 (2010), 369-455. doi: 10.1007/s00205-010-0294-x.  Google Scholar

[22]

J. L. Lewis, On very weak solutions of certain elliptic systems, Comm. Partial Differential Equations, 18 (1993), 1515-1537. doi: 10.1080/03605309308820984.  Google Scholar

[23]

P. Marcellini, Un example de solution discontinue d'un probéme variationel dans le cas scalaire,, Preprint Ist. U. Dini, (): 1987.   Google Scholar

[24]

P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non-standard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), 267-284. doi: 10.1007/BF00251503.  Google Scholar

[25]

P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Cl. Sci., 23 (1996), 1-25.  Google Scholar

[26]

P. Marcellini and G. Papi, Nonlinear elliptic systems with general growth, J. Diff. Eq., 221 (2006), 412-443. doi: 10.1016/j.jde.2004.11.011.  Google Scholar

[27]

G. Mingione, Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math., 51 (2006), 355-426. doi: 10.1007/s10778-006-0110-3.  Google Scholar

[28]

A. Passarelli di Napoli and F. Siepe, A regularity result for a class of anisotropic systems, Rend. Ist. Mat di Trieste, (1997), 13-31.  Google Scholar

[29]

J. Serrin, Pathological solutions of elliptic differential equations, Ann. Sc. Norm. Sup. Cl. Sci., 18 (1964), 385-387.  Google Scholar

[30]

V. Šverák and X. Yan, Non-Lipschitz minimizers of smooth uniformly convex variational integrals, Proc. Nat. Acad. Sci. USA, 99 (2002), 15269-15276. doi: 10.1073/pnas.222494699.  Google Scholar

[31]

V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116.  Google Scholar

[32]

W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Maths. 120, Springer-Verlag, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

[1]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[2]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[3]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[4]

Maksym Berezhnyi, Evgen Khruslov. Non-standard dynamics of elastic composites. Networks & Heterogeneous Media, 2011, 6 (1) : 89-109. doi: 10.3934/nhm.2011.6.89

[5]

Mostafa Abounouh, Hassan Al-Moatassime, Sabah Kaouri. Non-standard boundary conditions for the linearized Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2625-2654. doi: 10.3934/dcdss.2021066

[6]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[7]

Christopher Cox, Renato Feres. Differential geometry of rigid bodies collisions and non-standard billiards. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6065-6099. doi: 10.3934/dcds.2016065

[8]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[9]

Yuan Xu, Xin Jin, Saiwei Wang, Yang Tang. Optimal synchronization control of multiple euler-lagrange systems via event-triggered reinforcement learning. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1495-1518. doi: 10.3934/dcdss.2020377

[10]

Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial & Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010

[11]

Sergey A. Denisov. Infinite superlinear growth of the gradient for the two-dimensional Euler equation. Discrete & Continuous Dynamical Systems, 2009, 23 (3) : 755-764. doi: 10.3934/dcds.2009.23.755

[12]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

[13]

Leonid V. Bogachev, Gregory Derfel, Stanislav A. Molchanov. Analysis of the archetypal functional equation in the non-critical case. Conference Publications, 2015, 2015 (special) : 132-141. doi: 10.3934/proc.2015.0132

[14]

Adnan H. Sabuwala, Doreen De Leon. Particular solution to the Euler-Cauchy equation with polynomial non-homegeneities. Conference Publications, 2011, 2011 (Special) : 1271-1278. doi: 10.3934/proc.2011.2011.1271

[15]

Yuying Zhou, Gang Li. The Toland-Fenchel-Lagrange duality of DC programs for composite convex functions. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 9-23. doi: 10.3934/naco.2014.4.9

[16]

John A. D. Appleby, John A. Daniels. Exponential growth in the solution of an affine stochastic differential equation with an average functional and financial market bubbles. Conference Publications, 2011, 2011 (Special) : 91-101. doi: 10.3934/proc.2011.2011.91

[17]

John A. D. Appleby, Denis D. Patterson. Subexponential growth rates in functional differential equations. Conference Publications, 2015, 2015 (special) : 56-65. doi: 10.3934/proc.2015.0056

[18]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[19]

David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319

[20]

Mohammad Hassan Farshbaf-Shaker, Takeshi Fukao, Noriaki Yamazaki. Singular limit of Allen--Cahn equation with constraint and its Lagrange multiplier. Conference Publications, 2015, 2015 (special) : 418-427. doi: 10.3934/proc.2015.0418

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (92)
  • HTML views (0)
  • Cited by (7)

[Back to Top]