Citation: |
[1] |
E. Acerbi and N. Fusco, Partial regularity under anisotropic $(p, q)$ growth conditions, J. Diff. Eq., 107 (1994), 46-67.doi: 10.1006/jdeq.1994.1002. |
[2] |
J. J. Alibert and G. Bouchitté, Non-uniform integrability and generalized Young measures, J. Convex Anal., 4 (1997), 129-147. |
[3] |
J. M. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Ration. Mech. Anal., 90 (1985), 325-388.doi: 10.1007/BF00276295. |
[4] |
M. Bildhauer, Convex Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions, Lecture Notes in Mathematics, 1818. Springer-Verlag, Berlin, 2003.doi: 10.1007/b12308. |
[5] |
G. Bonfanti, A. Cellina and M. Mazzola, The higher integrability and the validity of the Euler-Lagrange equation for solutions to variational problems, SIAM J. Control Optim., 50 (2012), 888-899.doi: 10.1137/110820890. |
[6] |
G. Bonfanti and A. Cellina, The nonoccurrence of the Lavrentiev phenomenon for a class of variational functionals, SIAM J. Control Optim., 51 (2013), 1639-1650.doi: 10.1137/12086618X. |
[7] |
M. Carozza, J. Kristensen and A. Passarelli di Napoli, Higher differentiability of minimizers of convex variational integrals, Ann. Inst. Henri Poincaré, Anal. Non Linaire, 28 (2011), 395-411.doi: 10.1016/j.anihpc.2011.02.005. |
[8] |
M. Carozza, J. Kristensen and A. Passarelli di Napoli, Regularity of minimizers of autonomous convex variational integrals, Ann. Sc. Norm. Super. Pisa Cl. Sci. (V), to appear. |
[9] |
M. Carozza, G. Moscariello and A. Passarelli di Napoli, Regularity results via duality for minimizers of degenerate functionals, Asympt. Anal., 44 (2005), 221-235. |
[10] |
M. Carozza and A. Passarelli di Napoli, Regularity for minimizers of degenerate elliptic functionals, J. Nonlinear Convex Anal., 7 (2006), 375-383. |
[11] |
I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Applied Mathematics 28, SIAM, Philadelphia, 1999.doi: 10.1137/1.9781611971088. |
[12] |
L. Esposito, F. Leonetti and G. Mingione, Sharp higher integrability for minimizers of integral functionals with $(p, q)$ growth, J. Differential Equations, 204 (2004), 5-55.doi: 10.1016/j.jde.2003.11.007. |
[13] |
L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with $(p,q)$ growth, Forum Mathematicum, 14 (2002), 245-272.doi: 10.1515/form.2002.011. |
[14] |
I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 309-338.doi: 10.1016/S0294-1449(97)80139-4. |
[15] |
M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math., 59 (1987), 245-248.doi: 10.1007/BF01158049. |
[16] |
E. Giusti, Direct Methods in the Calculus of Variations, World Scientific, 2003.doi: 10.1142/9789812795557. |
[17] |
T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math., 454 (1994), 143-161.doi: 10.1515/crll.1994.454.143. |
[18] |
G. Kresin and V. Maz'ya, Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems, Mathematical Surveys and Monographs 183, American Mathematical Society, Providence, RI, 2012. |
[19] |
J. Kristensen and F. Rindler, Characterization of generalized gradient Young measures generated by sequences in $W^{1,1}$ and $\BV$, Arch. Ration. Mech. Anal., 197 (2010), 539-598. Erratum: ibid 203 (2012), 693-700. |
[20] |
J. Kristensen and G. Mingione, The singular set of minima of integral functionals, Arch. Ration. Mech. Anal., 180 (2006), 331-398.doi: 10.1007/s00205-005-0402-5. |
[21] |
J. Kristensen and G. Mingione, Boundary regularity in variational problems, Arch. Ration. Mech. Anal., 198 (2010), 369-455.doi: 10.1007/s00205-010-0294-x. |
[22] |
J. L. Lewis, On very weak solutions of certain elliptic systems, Comm. Partial Differential Equations, 18 (1993), 1515-1537.doi: 10.1080/03605309308820984. |
[23] |
P. Marcellini, Un example de solution discontinue d'un probéme variationel dans le cas scalaire, Preprint Ist. U. Dini, Firenze, 1987-88. |
[24] |
P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non-standard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), 267-284.doi: 10.1007/BF00251503. |
[25] |
P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Cl. Sci., 23 (1996), 1-25. |
[26] |
P. Marcellini and G. Papi, Nonlinear elliptic systems with general growth, J. Diff. Eq., 221 (2006), 412-443.doi: 10.1016/j.jde.2004.11.011. |
[27] |
G. Mingione, Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math., 51 (2006), 355-426.doi: 10.1007/s10778-006-0110-3. |
[28] |
A. Passarelli di Napoli and F. Siepe, A regularity result for a class of anisotropic systems, Rend. Ist. Mat di Trieste, (1997), 13-31. |
[29] |
J. Serrin, Pathological solutions of elliptic differential equations, Ann. Sc. Norm. Sup. Cl. Sci., 18 (1964), 385-387. |
[30] |
V. Šverák and X. Yan, Non-Lipschitz minimizers of smooth uniformly convex variational integrals, Proc. Nat. Acad. Sci. USA, 99 (2002), 15269-15276.doi: 10.1073/pnas.222494699. |
[31] |
V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116. |
[32] |
W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Maths. 120, Springer-Verlag, 1989.doi: 10.1007/978-1-4612-1015-3. |