\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the validity of the Euler-Lagrange system

Abstract / Introduction Related Papers Cited by
  • The minimizers of convex integral functionals of the form \begin{eqnarray} \mathfrak{F} (v, \Omega) = \int_{\Omega} F (Dv (x)) dx, \end{eqnarray} defined on Sobolev mappings $v$ in $W^{1,1}_{g}(\Omega R^N)$ are characterized as the energy solutions to the Euler--Lagrange system for $\mathfrak{F}$. We assume that the integrands $F: R^{N\times n} \to R$ are $C^1$, convex and super--linear at infinity, and the boundary datum $g \in W^{1,1}(\Omega, R^N)$ must satisfy $F(sDg) \in L^1(\Omega )$ for some number $s>1$.
    Mathematics Subject Classification: Primary: 49N15, 49N60; Secondary: 49N99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Acerbi and N. Fusco, Partial regularity under anisotropic $(p, q)$ growth conditions, J. Diff. Eq., 107 (1994), 46-67.doi: 10.1006/jdeq.1994.1002.

    [2]

    J. J. Alibert and G. Bouchitté, Non-uniform integrability and generalized Young measures, J. Convex Anal., 4 (1997), 129-147.

    [3]

    J. M. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Ration. Mech. Anal., 90 (1985), 325-388.doi: 10.1007/BF00276295.

    [4]

    M. Bildhauer, Convex Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions, Lecture Notes in Mathematics, 1818. Springer-Verlag, Berlin, 2003.doi: 10.1007/b12308.

    [5]

    G. Bonfanti, A. Cellina and M. Mazzola, The higher integrability and the validity of the Euler-Lagrange equation for solutions to variational problems, SIAM J. Control Optim., 50 (2012), 888-899.doi: 10.1137/110820890.

    [6]

    G. Bonfanti and A. Cellina, The nonoccurrence of the Lavrentiev phenomenon for a class of variational functionals, SIAM J. Control Optim., 51 (2013), 1639-1650.doi: 10.1137/12086618X.

    [7]

    M. Carozza, J. Kristensen and A. Passarelli di Napoli, Higher differentiability of minimizers of convex variational integrals, Ann. Inst. Henri Poincaré, Anal. Non Linaire, 28 (2011), 395-411.doi: 10.1016/j.anihpc.2011.02.005.

    [8]

    M. Carozza, J. Kristensen and A. Passarelli di Napoli, Regularity of minimizers of autonomous convex variational integrals, Ann. Sc. Norm. Super. Pisa Cl. Sci. (V), to appear.

    [9]

    M. Carozza, G. Moscariello and A. Passarelli di Napoli, Regularity results via duality for minimizers of degenerate functionals, Asympt. Anal., 44 (2005), 221-235.

    [10]

    M. Carozza and A. Passarelli di Napoli, Regularity for minimizers of degenerate elliptic functionals, J. Nonlinear Convex Anal., 7 (2006), 375-383.

    [11]

    I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Applied Mathematics 28, SIAM, Philadelphia, 1999.doi: 10.1137/1.9781611971088.

    [12]

    L. Esposito, F. Leonetti and G. Mingione, Sharp higher integrability for minimizers of integral functionals with $(p, q)$ growth, J. Differential Equations, 204 (2004), 5-55.doi: 10.1016/j.jde.2003.11.007.

    [13]

    L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with $(p,q)$ growth, Forum Mathematicum, 14 (2002), 245-272.doi: 10.1515/form.2002.011.

    [14]

    I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 309-338.doi: 10.1016/S0294-1449(97)80139-4.

    [15]

    M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math., 59 (1987), 245-248.doi: 10.1007/BF01158049.

    [16]

    E. Giusti, Direct Methods in the Calculus of Variations, World Scientific, 2003.doi: 10.1142/9789812795557.

    [17]

    T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math., 454 (1994), 143-161.doi: 10.1515/crll.1994.454.143.

    [18]

    G. Kresin and V. Maz'ya, Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems, Mathematical Surveys and Monographs 183, American Mathematical Society, Providence, RI, 2012.

    [19]

    J. Kristensen and F. Rindler, Characterization of generalized gradient Young measures generated by sequences in $W^{1,1}$ and $\BV$, Arch. Ration. Mech. Anal., 197 (2010), 539-598. Erratum: ibid 203 (2012), 693-700.

    [20]

    J. Kristensen and G. Mingione, The singular set of minima of integral functionals, Arch. Ration. Mech. Anal., 180 (2006), 331-398.doi: 10.1007/s00205-005-0402-5.

    [21]

    J. Kristensen and G. Mingione, Boundary regularity in variational problems, Arch. Ration. Mech. Anal., 198 (2010), 369-455.doi: 10.1007/s00205-010-0294-x.

    [22]

    J. L. Lewis, On very weak solutions of certain elliptic systems, Comm. Partial Differential Equations, 18 (1993), 1515-1537.doi: 10.1080/03605309308820984.

    [23]

    P. Marcellini, Un example de solution discontinue d'un probéme variationel dans le cas scalaire, Preprint Ist. U. Dini, Firenze, 1987-88.

    [24]

    P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non-standard growth conditions, Arch. Ration. Mech. Anal., 105 (1989), 267-284.doi: 10.1007/BF00251503.

    [25]

    P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Cl. Sci., 23 (1996), 1-25.

    [26]

    P. Marcellini and G. Papi, Nonlinear elliptic systems with general growth, J. Diff. Eq., 221 (2006), 412-443.doi: 10.1016/j.jde.2004.11.011.

    [27]

    G. Mingione, Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math., 51 (2006), 355-426.doi: 10.1007/s10778-006-0110-3.

    [28]

    A. Passarelli di Napoli and F. Siepe, A regularity result for a class of anisotropic systems, Rend. Ist. Mat di Trieste, (1997), 13-31.

    [29]

    J. Serrin, Pathological solutions of elliptic differential equations, Ann. Sc. Norm. Sup. Cl. Sci., 18 (1964), 385-387.

    [30]

    V. Šverák and X. Yan, Non-Lipschitz minimizers of smooth uniformly convex variational integrals, Proc. Nat. Acad. Sci. USA, 99 (2002), 15269-15276.doi: 10.1073/pnas.222494699.

    [31]

    V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116.

    [32]

    W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Maths. 120, Springer-Verlag, 1989.doi: 10.1007/978-1-4612-1015-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(227) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return