January  2015, 14(1): 51-62. doi: 10.3934/cpaa.2015.14.51

On the validity of the Euler-Lagrange system

1. 

Università del Sannio, Piazza Arechi II - 82100 Benevento

2. 

Mathematical Institute, 24–29 St Giles’, University of Oxford, OX1 3LB Oxford

3. 

Dipartimento di Matematica e Appl. “R. Caccioppoli”, Via Cintia- Monte S.Angelo, 80126 Napoli

Received  February 2014 Revised  March 2014 Published  September 2014

The minimizers of convex integral functionals of the form \begin{eqnarray} \mathfrak{F} (v, \Omega) = \int_{\Omega} F (Dv (x)) dx, \end{eqnarray} defined on Sobolev mappings $v$ in $W^{1,1}_{g}(\Omega R^N)$ are characterized as the energy solutions to the Euler--Lagrange system for $\mathfrak{F}$. We assume that the integrands $F: R^{N\times n} \to R$ are $C^1$, convex and super--linear at infinity, and the boundary datum $g \in W^{1,1}(\Omega, R^N)$ must satisfy $F(sDg) \in L^1(\Omega )$ for some number $s>1$.
Citation: Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli. On the validity of the Euler-Lagrange system. Communications on Pure & Applied Analysis, 2015, 14 (1) : 51-62. doi: 10.3934/cpaa.2015.14.51
References:
[1]

E. Acerbi and N. Fusco, Partial regularity under anisotropic $(p, q)$ growth conditions,, \emph{J. Diff. Eq.}, 107 (1994), 46. doi: 10.1006/jdeq.1994.1002.

[2]

J. J. Alibert and G. Bouchitté, Non-uniform integrability and generalized Young measures,, \emph{J. Convex Anal.}, 4 (1997), 129.

[3]

J. M. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation,, \emph{Arch. Ration. Mech. Anal.}, 90 (1985), 325. doi: 10.1007/BF00276295.

[4]

M. Bildhauer, Convex Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions,, Lecture Notes in Mathematics, (1818). doi: 10.1007/b12308.

[5]

G. Bonfanti, A. Cellina and M. Mazzola, The higher integrability and the validity of the Euler-Lagrange equation for solutions to variational problems,, \emph{SIAM J. Control Optim.}, 50 (2012), 888. doi: 10.1137/110820890.

[6]

G. Bonfanti and A. Cellina, The nonoccurrence of the Lavrentiev phenomenon for a class of variational functionals,, \emph{SIAM J. Control Optim.}, 51 (2013), 1639. doi: 10.1137/12086618X.

[7]

M. Carozza, J. Kristensen and A. Passarelli di Napoli, Higher differentiability of minimizers of convex variational integrals,, \emph{Ann. Inst. Henri Poincar\'e, 28 (2011), 395. doi: 10.1016/j.anihpc.2011.02.005.

[8]

M. Carozza, J. Kristensen and A. Passarelli di Napoli, Regularity of minimizers of autonomous convex variational integrals,, \emph{Ann. Sc. Norm. Super. Pisa Cl. Sci. (V)}, ().

[9]

M. Carozza, G. Moscariello and A. Passarelli di Napoli, Regularity results via duality for minimizers of degenerate functionals,, \emph{Asympt. Anal.}, 44 (2005), 221.

[10]

M. Carozza and A. Passarelli di Napoli, Regularity for minimizers of degenerate elliptic functionals,, \emph{J. Nonlinear Convex Anal.}, 7 (2006), 375.

[11]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, Classics in Applied Mathematics 28, (1999). doi: 10.1137/1.9781611971088.

[12]

L. Esposito, F. Leonetti and G. Mingione, Sharp higher integrability for minimizers of integral functionals with $(p, q)$ growth,, \emph{J. Differential Equations}, 204 (2004), 5. doi: 10.1016/j.jde.2003.11.007.

[13]

L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with $(p,q)$ growth,, \emph{Forum Mathematicum}, 14 (2002), 245. doi: 10.1515/form.2002.011.

[14]

I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 14 (1997), 309. doi: 10.1016/S0294-1449(97)80139-4.

[15]

M. Giaquinta, Growth conditions and regularity, a counterexample,, \emph{Manuscripta Math.}, 59 (1987), 245. doi: 10.1007/BF01158049.

[16]

E. Giusti, Direct Methods in the Calculus of Variations,, World Scientific, (2003). doi: 10.1142/9789812795557.

[17]

T. Iwaniec and C. Sbordone, Weak minima of variational integrals,, \emph{J. Reine Angew. Math.}, 454 (1994), 143. doi: 10.1515/crll.1994.454.143.

[18]

G. Kresin and V. Maz'ya, Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems,, Mathematical Surveys and Monographs \textbf{183}, 183 (2012).

[19]

J. Kristensen and F. Rindler, Characterization of generalized gradient Young measures generated by sequences in $W^{1,1}$ and $\BV$,, \emph{Arch. Ration. Mech. Anal.}, 197 (2010), 539.

[20]

J. Kristensen and G. Mingione, The singular set of minima of integral functionals,, \emph{Arch. Ration. Mech. Anal.}, 180 (2006), 331. doi: 10.1007/s00205-005-0402-5.

[21]

J. Kristensen and G. Mingione, Boundary regularity in variational problems,, \emph{Arch. Ration. Mech. Anal.}, 198 (2010), 369. doi: 10.1007/s00205-010-0294-x.

[22]

J. L. Lewis, On very weak solutions of certain elliptic systems,, \emph{Comm. Partial Differential Equations}, 18 (1993), 1515. doi: 10.1080/03605309308820984.

[23]

P. Marcellini, Un example de solution discontinue d'un probéme variationel dans le cas scalaire,, Preprint Ist. U. Dini, (): 1987.

[24]

P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non-standard growth conditions,, \emph{Arch. Ration. Mech. Anal.}, 105 (1989), 267. doi: 10.1007/BF00251503.

[25]

P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions,, \emph{Ann. Scuola Norm. Sup. Cl. Sci., 23 (1996), 1.

[26]

P. Marcellini and G. Papi, Nonlinear elliptic systems with general growth,, \emph{J. Diff. Eq.}, 221 (2006), 412. doi: 10.1016/j.jde.2004.11.011.

[27]

G. Mingione, Regularity of minima: an invitation to the dark side of the calculus of variations,, \emph{Appl. Math.}, 51 (2006), 355. doi: 10.1007/s10778-006-0110-3.

[28]

A. Passarelli di Napoli and F. Siepe, A regularity result for a class of anisotropic systems,, \emph{Rend. Ist. Mat di Trieste}, (1997), 13.

[29]

J. Serrin, Pathological solutions of elliptic differential equations,, \emph{Ann. Sc. Norm. Sup. Cl. Sci., 18 (1964), 385.

[30]

V. Šverák and X. Yan, Non-Lipschitz minimizers of smooth uniformly convex variational integrals,, \emph{Proc. Nat. Acad. Sci. USA}, 99 (2002), 15269. doi: 10.1073/pnas.222494699.

[31]

V. V. Zhikov, On some variational problems,, \emph{Russian J. Math. Phys.}, 5 (1997), 105.

[32]

W. P. Ziemer, Weakly Differentiable Functions,, Graduate Texts in Maths. 120, (1989). doi: 10.1007/978-1-4612-1015-3.

show all references

References:
[1]

E. Acerbi and N. Fusco, Partial regularity under anisotropic $(p, q)$ growth conditions,, \emph{J. Diff. Eq.}, 107 (1994), 46. doi: 10.1006/jdeq.1994.1002.

[2]

J. J. Alibert and G. Bouchitté, Non-uniform integrability and generalized Young measures,, \emph{J. Convex Anal.}, 4 (1997), 129.

[3]

J. M. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation,, \emph{Arch. Ration. Mech. Anal.}, 90 (1985), 325. doi: 10.1007/BF00276295.

[4]

M. Bildhauer, Convex Variational Problems. Linear, Nearly Linear and Anisotropic Growth Conditions,, Lecture Notes in Mathematics, (1818). doi: 10.1007/b12308.

[5]

G. Bonfanti, A. Cellina and M. Mazzola, The higher integrability and the validity of the Euler-Lagrange equation for solutions to variational problems,, \emph{SIAM J. Control Optim.}, 50 (2012), 888. doi: 10.1137/110820890.

[6]

G. Bonfanti and A. Cellina, The nonoccurrence of the Lavrentiev phenomenon for a class of variational functionals,, \emph{SIAM J. Control Optim.}, 51 (2013), 1639. doi: 10.1137/12086618X.

[7]

M. Carozza, J. Kristensen and A. Passarelli di Napoli, Higher differentiability of minimizers of convex variational integrals,, \emph{Ann. Inst. Henri Poincar\'e, 28 (2011), 395. doi: 10.1016/j.anihpc.2011.02.005.

[8]

M. Carozza, J. Kristensen and A. Passarelli di Napoli, Regularity of minimizers of autonomous convex variational integrals,, \emph{Ann. Sc. Norm. Super. Pisa Cl. Sci. (V)}, ().

[9]

M. Carozza, G. Moscariello and A. Passarelli di Napoli, Regularity results via duality for minimizers of degenerate functionals,, \emph{Asympt. Anal.}, 44 (2005), 221.

[10]

M. Carozza and A. Passarelli di Napoli, Regularity for minimizers of degenerate elliptic functionals,, \emph{J. Nonlinear Convex Anal.}, 7 (2006), 375.

[11]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, Classics in Applied Mathematics 28, (1999). doi: 10.1137/1.9781611971088.

[12]

L. Esposito, F. Leonetti and G. Mingione, Sharp higher integrability for minimizers of integral functionals with $(p, q)$ growth,, \emph{J. Differential Equations}, 204 (2004), 5. doi: 10.1016/j.jde.2003.11.007.

[13]

L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with $(p,q)$ growth,, \emph{Forum Mathematicum}, 14 (2002), 245. doi: 10.1515/form.2002.011.

[14]

I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 14 (1997), 309. doi: 10.1016/S0294-1449(97)80139-4.

[15]

M. Giaquinta, Growth conditions and regularity, a counterexample,, \emph{Manuscripta Math.}, 59 (1987), 245. doi: 10.1007/BF01158049.

[16]

E. Giusti, Direct Methods in the Calculus of Variations,, World Scientific, (2003). doi: 10.1142/9789812795557.

[17]

T. Iwaniec and C. Sbordone, Weak minima of variational integrals,, \emph{J. Reine Angew. Math.}, 454 (1994), 143. doi: 10.1515/crll.1994.454.143.

[18]

G. Kresin and V. Maz'ya, Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems,, Mathematical Surveys and Monographs \textbf{183}, 183 (2012).

[19]

J. Kristensen and F. Rindler, Characterization of generalized gradient Young measures generated by sequences in $W^{1,1}$ and $\BV$,, \emph{Arch. Ration. Mech. Anal.}, 197 (2010), 539.

[20]

J. Kristensen and G. Mingione, The singular set of minima of integral functionals,, \emph{Arch. Ration. Mech. Anal.}, 180 (2006), 331. doi: 10.1007/s00205-005-0402-5.

[21]

J. Kristensen and G. Mingione, Boundary regularity in variational problems,, \emph{Arch. Ration. Mech. Anal.}, 198 (2010), 369. doi: 10.1007/s00205-010-0294-x.

[22]

J. L. Lewis, On very weak solutions of certain elliptic systems,, \emph{Comm. Partial Differential Equations}, 18 (1993), 1515. doi: 10.1080/03605309308820984.

[23]

P. Marcellini, Un example de solution discontinue d'un probéme variationel dans le cas scalaire,, Preprint Ist. U. Dini, (): 1987.

[24]

P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non-standard growth conditions,, \emph{Arch. Ration. Mech. Anal.}, 105 (1989), 267. doi: 10.1007/BF00251503.

[25]

P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions,, \emph{Ann. Scuola Norm. Sup. Cl. Sci., 23 (1996), 1.

[26]

P. Marcellini and G. Papi, Nonlinear elliptic systems with general growth,, \emph{J. Diff. Eq.}, 221 (2006), 412. doi: 10.1016/j.jde.2004.11.011.

[27]

G. Mingione, Regularity of minima: an invitation to the dark side of the calculus of variations,, \emph{Appl. Math.}, 51 (2006), 355. doi: 10.1007/s10778-006-0110-3.

[28]

A. Passarelli di Napoli and F. Siepe, A regularity result for a class of anisotropic systems,, \emph{Rend. Ist. Mat di Trieste}, (1997), 13.

[29]

J. Serrin, Pathological solutions of elliptic differential equations,, \emph{Ann. Sc. Norm. Sup. Cl. Sci., 18 (1964), 385.

[30]

V. Šverák and X. Yan, Non-Lipschitz minimizers of smooth uniformly convex variational integrals,, \emph{Proc. Nat. Acad. Sci. USA}, 99 (2002), 15269. doi: 10.1073/pnas.222494699.

[31]

V. V. Zhikov, On some variational problems,, \emph{Russian J. Math. Phys.}, 5 (1997), 105.

[32]

W. P. Ziemer, Weakly Differentiable Functions,, Graduate Texts in Maths. 120, (1989). doi: 10.1007/978-1-4612-1015-3.

[1]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[2]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[3]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[4]

Maksym Berezhnyi, Evgen Khruslov. Non-standard dynamics of elastic composites. Networks & Heterogeneous Media, 2011, 6 (1) : 89-109. doi: 10.3934/nhm.2011.6.89

[5]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[6]

Christopher Cox, Renato Feres. Differential geometry of rigid bodies collisions and non-standard billiards. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6065-6099. doi: 10.3934/dcds.2016065

[7]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[8]

Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial & Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010

[9]

Sergey A. Denisov. Infinite superlinear growth of the gradient for the two-dimensional Euler equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 755-764. doi: 10.3934/dcds.2009.23.755

[10]

Leonid V. Bogachev, Gregory Derfel, Stanislav A. Molchanov. Analysis of the archetypal functional equation in the non-critical case. Conference Publications, 2015, 2015 (special) : 132-141. doi: 10.3934/proc.2015.0132

[11]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

[12]

Adnan H. Sabuwala, Doreen De Leon. Particular solution to the Euler-Cauchy equation with polynomial non-homegeneities. Conference Publications, 2011, 2011 (Special) : 1271-1278. doi: 10.3934/proc.2011.2011.1271

[13]

Yuying Zhou, Gang Li. The Toland-Fenchel-Lagrange duality of DC programs for composite convex functions. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 9-23. doi: 10.3934/naco.2014.4.9

[14]

John A. D. Appleby, John A. Daniels. Exponential growth in the solution of an affine stochastic differential equation with an average functional and financial market bubbles. Conference Publications, 2011, 2011 (Special) : 91-101. doi: 10.3934/proc.2011.2011.91

[15]

John A. D. Appleby, Denis D. Patterson. Subexponential growth rates in functional differential equations. Conference Publications, 2015, 2015 (special) : 56-65. doi: 10.3934/proc.2015.0056

[16]

David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319

[17]

Mohammad Hassan Farshbaf-Shaker, Takeshi Fukao, Noriaki Yamazaki. Singular limit of Allen--Cahn equation with constraint and its Lagrange multiplier. Conference Publications, 2015, 2015 (special) : 418-427. doi: 10.3934/proc.2015.0418

[18]

Claude Vallée, Camelia Lerintiu, Danielle Fortuné, Kossi Atchonouglo, Jamal Chaoufi. Modelling of implicit standard materials. Application to linear coaxial non-associated constitutive laws. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1641-1649. doi: 10.3934/dcdss.2013.6.1641

[19]

Timoteo Carletti. The lagrange inversion formula on non--Archimedean fields, non--analytical form of differential and finite difference equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 835-858. doi: 10.3934/dcds.2003.9.835

[20]

Andrea Braides, Valeria Chiadò Piat. Non convex homogenization problems for singular structures. Networks & Heterogeneous Media, 2008, 3 (3) : 489-508. doi: 10.3934/nhm.2008.3.489

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

[Back to Top]