\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The Liouville type theorem and local regularity results for nonlinear differential and integral systems

Abstract / Introduction Related Papers Cited by
  • In this paper we establish a Liouville type theorem for positive solutions of a class of system of integral equations. Firstly, we show the local regularity lifting result with the help of the Hardy-Littlewood-Sobolev inequality. Then by the method of moving planes in integral forms, we obtain a Liouville type theorem for this system.
    Mathematics Subject Classification: Primary: 35A05, 35J45, 35J60; Secondary: 45G15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Busca and R. Manásevich, A Liouville-type theorem for Lane-Emden system, Indi. Unve. Math. J, 51 (2002), 37-51.doi: 10.2307/2152750.

    [2]

    G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan. J. Math., 76 (2008), 27-67.doi: 10.2307/2152750.

    [3]

    L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure. Appl. Math., 42 (1989), 271-297.doi: 10.2307/2152750.

    [4]

    W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J, 63 (1991), 615-622.doi: 10.2307/2152750.

    [5]

    W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta. Math. Scie, 29B (2009), 949-960.doi: 10.2307/2152750.

    [6]

    W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, Comm. Pure. Appl. Anna, 12 (2013), 2497-2514.doi: 10.2307/2152750.

    [7]

    W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Disc. Cont. Dyna. Syst-A, 24 (2009), 1167-1184.doi: 10.2307/2152750.

    [8]

    W Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure. Appl. Math, 59 (2006), 330-343.doi: 10.2307/2152750.

    [9]

    W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Part. Diff. Equa, 30 (2005), 59-65.doi: 10.2307/2152750.

    [10]

    W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Disc. Cont. Dyna. Syst-A, 12 (2005), 347-354.doi: 10.2307/2152750.

    [11]

    A. Chang and P. Yang, On uniqueness of an $n$-th order differential equation in conformal geometry, Math. Res. Lett, 4 (1997), 91-102.doi: 10.2307/2152750.

    [12]

    L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains, Rev Mat Iber, 20 (2004), 67-86.doi: 10.2307/2152750.

    [13]

    P. H. Fowler, Further studies of emden's and similar differential equations, Quar. J. Math (Oxford), 2 (1931), 259-288.doi: 10.2307/2152750.

    [14]

    D. G. de Figueiredo and P. L. Felmer, A Liouville-type theorem for elliptic systems, Anna. Scuola Norm. Sup. Pisa, 21 (1994), 387-397.doi: 10.2307/2152750.

    [15]

    Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbbR^n$, Comm. Part. Diff. Equa, 33 (2008), 263-284.doi: 10.2307/2152750.

    [16]

    B. Gidas, W. Ni and L. Nirenberg, Symmetry of Positive Solutions of Nonlinear Elliptic Equations in $\mathbbR^n$, collected in the book Mathematical Analysis and Applications, which is vol. 7a of the book series Advances in Mathematics. Supplementary Studies, Academic Press, New York, 1981.doi: 10.1007/978-1-4612-0873-0.

    [17]

    B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure. Appl. Math, 34 (1981), 525-598.doi: 10.2307/2152750.

    [18]

    F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math Res. Lett, 14 (2007), 373-383.doi: 10.2307/2152750.

    [19]

    T. Kanna and M. Lakshmanan, Exact soliton solutions, shape changing collisions and partially coherent solitons in coupled nonlinear Schrödinger equations, Phys. Rev. Lett, 86 (2001), 5043-5046.doi: 10.2307/2152750.

    [20]

    C. Li, Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Inve. Math, 123 (1996), 221-231.doi: 10.2307/2152750.

    [21]

    C. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbbR^n$, Comm. Math. Helv, 73 (1998), 206-231.doi: 10.2307/2152750.

    [22]

    J. Liu, Y. Guo and Y. Zhang, Liouville-type theorems for polyharmonic systems in $\mathbbR^n$, J. Diff. Equa, 225 (2006), 685-709.doi: 10.2307/2152750.

    [23]

    C. Li and L. Ma, Uniqueness of positive bound states to Shrödinger systems with critical exponents, SIAM J. Math. Anal, 40 (2008), 1049-1057.doi: 10.2307/2152750.

    [24]

    T. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in $\mathbbR^n$, $n\leq3$, Comm. Math. Phys, 255 (2005), 629-653.doi: 10.2307/2152750.

    [25]

    T. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann Inst H Poincaré Anal Non-Lin, 22 (2005), 403-439.doi: 10.2307/2152750.

    [26]

    E. Mitidieri, Non-existence of positive solutions of semilinear systems in $\mathbbR^n$, Diff. Inte. Equa, 9 (1996), 465-479.doi: 10.2307/2152750.

    [27]

    C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Advances in Math, 226 (2011), 2676-2699.doi: 10.2307/2152750.

    [28]

    L. Ma and L. Zhao, Sharp thresholds of blow-up and global existence for the coupled nonlinear Schrödinger system, J. Math. phys, 49, (2008), 062103.doi: 10.2307/2152750.

    [29]

    P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear prooblems via Liouville-type theorems. Part I: elliptic systems, Duke Math. J, 139 (2007), 555-579.doi: 10.2307/2152750.

    [30]

    W. Reichel and H. Zou, Non-existence results for semilinear cooperative elliptic systems via moving spheres, J. Diff. Equa, 161 (2000), 219-243.doi: 10.2307/2152750.

    [31]

    Ph. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Advances in Math, 221 (2009), 1409-1427.doi: 10.2307/2152750.

    [32]

    E. M. Stein and G. Weiss, Fractional integrals in n-dimensional Euclidean space, J. Math. Mech, 7 (1958), 503-514.doi: 10.2307/2152750.

    [33]

    J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system, Diff. Inte. Equa, 9 (1996), 635-653.doi: 10.2307/2152750.

    [34]

    J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden system, Atti Sem. Mat. Fis. Univ. Modena. Sippl, 46 (1996), 369-380.doi: 10.2307/2152750.

    [35]

    J. Serrin and H. Zou, The existence of positive entire solutions of elliptic Hamiltonian system, Comm. Part. Diff. Equa, 23 (1998), 577-599.doi: 10.2307/2152750.

    [36]

    J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Anna, 313 (1999), 207-228.doi: 10.2307/2152750.

    [37]

    X. Yu, Liouville type theorems for integral equations and integral systems, Calc. Vari. Part. Diff. Equa, 46 (2013), 75-95.doi: 10.2307/2152750.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(103) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return