• Previous Article
    Note on global regularity of 3D generalized magnetohydrodynamic-$\alpha$ model with zero diffusivity
  • CPAA Home
  • This Issue
  • Next Article
    The Liouville type theorem and local regularity results for nonlinear differential and integral systems
March  2015, 14(2): 577-584. doi: 10.3934/cpaa.2015.14.577

On the growth of the energy of entire solutions to the vector Allen-Cahn equation

1. 

Department of Mathematics and Applied Mathematics, University of Crete, Voutes University Campus, Heraklion 71003, China

Received  April 2014 Revised  September 2014 Published  December 2014

We prove that the energy over balls of entire, nonconstant bounded solutions to the vector Allen-Cahn equation grows faster than $(\ln R)^k R^{n-2}$, for any $k>0$, as the radius $R$ of the $n$-dimensional ball tends to infinity. This improves the growth rate of order $R^{n-2}$ if $n\geq 3$ and $\ln R$ if $n=2$ that follows from the general weak monotonicity formula. Moreover, our estimate may be considered as an approximation to the corresponding rate of order $R^{n-1}$ that is known to hold in the scalar case.
Citation: Christos Sourdis. On the growth of the energy of entire solutions to the vector Allen-Cahn equation. Communications on Pure & Applied Analysis, 2015, 14 (2) : 577-584. doi: 10.3934/cpaa.2015.14.577
References:
[1]

N. D. Alikakos, Some basic facts on the system $\Delta u - W_u(u) = 0$,, \emph{Proc. Amer. Math. Soc.}, 139 (2011), 153.  doi: 10.1090/S0002-9939-2010-10453-7.  Google Scholar

[2]

N. D. Alikakos and G. Fusco, Density estimates for vector minimizers and applications,, preprint, ().   Google Scholar

[3]

S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 7 (1990), 67.   Google Scholar

[4]

P. W. Bates, G. Fusco and P. Smyrnelis, Multiphase solutions to the vector Allen-Cahn equation: crystalline and other complex symmetric structures,, preprint, ().   Google Scholar

[5]

F. Bethuel, H. Brezis and G. Orlandi, Asymptotics of the Ginzburg-Landau equation in arbitrary dimensions,, \emph{J. Funct. Anal.}, 186 (2001), 432.   Google Scholar

[6]

L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation,, \emph{Arch. Ration. Mech. Anal.}, 124 (1993), 355.  doi: 10.1007/BF00375607.  Google Scholar

[7]

L. Caffarelli, N. Garofalo and F. Segála, A gradient bound for entire solutions of quasi-linear equations and its consequences,, \emph{Comm. Pure Appl. Math.}, 47 (1994), 1457.   Google Scholar

[8]

L. Caffarelli and A. Córdoba, Uniform convergence of a singular perturbation problem,, \emph{Comm. Pure Appl. Math.}, 48 (1995), 1.  doi: 10.1002/cpa.3160480101.  Google Scholar

[9]

L. A. Caffarelli and F-H. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries,, \emph{J. Amer. Math. Soc.}, 21 (2008), 847.  doi: 10.1090/S0894-0347-08-00593-6.  Google Scholar

[10]

M. del Pino, P. Felmer and M. Kowalczyk, Minimality and nondegeneracy of degree-one Ginzburg-Landau vortex as a Hardy's type inequality,, \emph{Int. Math. Res. Not.}, 30 (2004), 1511.  doi: 10.1155/S1073792804133588.  Google Scholar

[11]

A. Farina, Two results on entire solutions of Ginzburg-Landau system in higher dimensions,, \emph{J. Funct. Anal.}, 214 (2004), 386.  doi: 10.1016/j.jfa.2003.07.012.  Google Scholar

[12]

A. Farina and E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems,, \emph{Arch. Ration. Mech. Anal.}, 195 (2010), 1025.  doi: 10.1007/s00205-009-0227-8.  Google Scholar

[13]

G. Fusco, On some elementary properties of vector minimizers of the Allen-Cahn energy,, \emph{Comm. Pure Appl. Anal.}, 13 (2014), 1045.  doi: doi:10.3934/cpaa.2014.13.1045.  Google Scholar

[14]

N. Ghoussoub and B. Pass, Decoupling of De Giorgi-type systems via multi-marginal optimal transport,, \emph{Comm. Partial Differential Equations}, 39 (2014), 1032.  doi: 10.1080/03605302.2013.849730.  Google Scholar

[15]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, 2$^{nd}$ edition, (1983).   Google Scholar

[16]

C. Gui and F. Zhou, Asymptotic behavior of oscillating radial solutions to certain nonlinear equations,, \emph{Methods Appl. Anal.}, 15 (2008), 285.  doi: 10.4310/MAA.2008.v15.n3.a3.  Google Scholar

[17]

P. Mironescu and V. Radulescu, Periodic solutions of the equation $-\Delta v=v(1-|v|^2)$ in $\mathbbR$ and $\mathbbR^2$,, \emph{Houston J. Math.}, 20 (1994), 653.   Google Scholar

[18]

L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations,, \emph{Comm. Pure Appl. Math.}, 38 (1985), 679.  doi: 10.1002/cpa.3160380515.  Google Scholar

[19]

L. Modica, Monotonicity of the energy for entire solutions of semilinear elliptic equations,, in \emph{Partial Differential Equations and the Calculus of Variations, (1989), 843.   Google Scholar

[20]

T. Riviére, Asymptotic analysis for the Ginzburg-Landau equations,, \emph{Bollettino dell'Unione Matematica Italiana 2-B}, 3 (1999), 537.   Google Scholar

[21]

D. Smets, PDE analysis of concentrating energies for the Ginzburg-Landau equation,, in \emph{Topics on Concentration Phenomena and Problems with Multiple Scales} (eds. A. Braides and V. C. Piat), (2006), 293.  doi: 10.1007/978-3-540-36546-4_8.  Google Scholar

[22]

P. Smyrnelis, Gradient estimates for semilinear elliptic systems and other related results,, preprint, ().   Google Scholar

[23]

R. Sperb, Maximum Principles and their Applications,, Academic Press, (1981).   Google Scholar

[24]

C. Sourdis, Optimal energy growth lower bounds for a class of solutions to the vectorial Allen-Cahn equation,, preprint, ().   Google Scholar

[25]

C. Sourdis, A new monotonicity formula for solutions to the elliptic system $\Delta u=\nabla W(u)$,, preprint, ().   Google Scholar

[26]

C. Sourdis, Energy estimates for minimizers to a class of elliptic systems of Allen-Cahn type and the Liouville property,, preprint, ().   Google Scholar

show all references

References:
[1]

N. D. Alikakos, Some basic facts on the system $\Delta u - W_u(u) = 0$,, \emph{Proc. Amer. Math. Soc.}, 139 (2011), 153.  doi: 10.1090/S0002-9939-2010-10453-7.  Google Scholar

[2]

N. D. Alikakos and G. Fusco, Density estimates for vector minimizers and applications,, preprint, ().   Google Scholar

[3]

S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 7 (1990), 67.   Google Scholar

[4]

P. W. Bates, G. Fusco and P. Smyrnelis, Multiphase solutions to the vector Allen-Cahn equation: crystalline and other complex symmetric structures,, preprint, ().   Google Scholar

[5]

F. Bethuel, H. Brezis and G. Orlandi, Asymptotics of the Ginzburg-Landau equation in arbitrary dimensions,, \emph{J. Funct. Anal.}, 186 (2001), 432.   Google Scholar

[6]

L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation,, \emph{Arch. Ration. Mech. Anal.}, 124 (1993), 355.  doi: 10.1007/BF00375607.  Google Scholar

[7]

L. Caffarelli, N. Garofalo and F. Segála, A gradient bound for entire solutions of quasi-linear equations and its consequences,, \emph{Comm. Pure Appl. Math.}, 47 (1994), 1457.   Google Scholar

[8]

L. Caffarelli and A. Córdoba, Uniform convergence of a singular perturbation problem,, \emph{Comm. Pure Appl. Math.}, 48 (1995), 1.  doi: 10.1002/cpa.3160480101.  Google Scholar

[9]

L. A. Caffarelli and F-H. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries,, \emph{J. Amer. Math. Soc.}, 21 (2008), 847.  doi: 10.1090/S0894-0347-08-00593-6.  Google Scholar

[10]

M. del Pino, P. Felmer and M. Kowalczyk, Minimality and nondegeneracy of degree-one Ginzburg-Landau vortex as a Hardy's type inequality,, \emph{Int. Math. Res. Not.}, 30 (2004), 1511.  doi: 10.1155/S1073792804133588.  Google Scholar

[11]

A. Farina, Two results on entire solutions of Ginzburg-Landau system in higher dimensions,, \emph{J. Funct. Anal.}, 214 (2004), 386.  doi: 10.1016/j.jfa.2003.07.012.  Google Scholar

[12]

A. Farina and E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems,, \emph{Arch. Ration. Mech. Anal.}, 195 (2010), 1025.  doi: 10.1007/s00205-009-0227-8.  Google Scholar

[13]

G. Fusco, On some elementary properties of vector minimizers of the Allen-Cahn energy,, \emph{Comm. Pure Appl. Anal.}, 13 (2014), 1045.  doi: doi:10.3934/cpaa.2014.13.1045.  Google Scholar

[14]

N. Ghoussoub and B. Pass, Decoupling of De Giorgi-type systems via multi-marginal optimal transport,, \emph{Comm. Partial Differential Equations}, 39 (2014), 1032.  doi: 10.1080/03605302.2013.849730.  Google Scholar

[15]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, 2$^{nd}$ edition, (1983).   Google Scholar

[16]

C. Gui and F. Zhou, Asymptotic behavior of oscillating radial solutions to certain nonlinear equations,, \emph{Methods Appl. Anal.}, 15 (2008), 285.  doi: 10.4310/MAA.2008.v15.n3.a3.  Google Scholar

[17]

P. Mironescu and V. Radulescu, Periodic solutions of the equation $-\Delta v=v(1-|v|^2)$ in $\mathbbR$ and $\mathbbR^2$,, \emph{Houston J. Math.}, 20 (1994), 653.   Google Scholar

[18]

L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations,, \emph{Comm. Pure Appl. Math.}, 38 (1985), 679.  doi: 10.1002/cpa.3160380515.  Google Scholar

[19]

L. Modica, Monotonicity of the energy for entire solutions of semilinear elliptic equations,, in \emph{Partial Differential Equations and the Calculus of Variations, (1989), 843.   Google Scholar

[20]

T. Riviére, Asymptotic analysis for the Ginzburg-Landau equations,, \emph{Bollettino dell'Unione Matematica Italiana 2-B}, 3 (1999), 537.   Google Scholar

[21]

D. Smets, PDE analysis of concentrating energies for the Ginzburg-Landau equation,, in \emph{Topics on Concentration Phenomena and Problems with Multiple Scales} (eds. A. Braides and V. C. Piat), (2006), 293.  doi: 10.1007/978-3-540-36546-4_8.  Google Scholar

[22]

P. Smyrnelis, Gradient estimates for semilinear elliptic systems and other related results,, preprint, ().   Google Scholar

[23]

R. Sperb, Maximum Principles and their Applications,, Academic Press, (1981).   Google Scholar

[24]

C. Sourdis, Optimal energy growth lower bounds for a class of solutions to the vectorial Allen-Cahn equation,, preprint, ().   Google Scholar

[25]

C. Sourdis, A new monotonicity formula for solutions to the elliptic system $\Delta u=\nabla W(u)$,, preprint, ().   Google Scholar

[26]

C. Sourdis, Energy estimates for minimizers to a class of elliptic systems of Allen-Cahn type and the Liouville property,, preprint, ().   Google Scholar

[1]

Hirokazu Ninomiya. Entire solutions and traveling wave solutions of the Allen-Cahn-Nagumo equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2001-2019. doi: 10.3934/dcds.2019084

[2]

Isabeau Birindelli, Enrico Valdinoci. On the Allen-Cahn equation in the Grushin plane: A monotone entire solution that is not one-dimensional. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 823-838. doi: 10.3934/dcds.2011.29.823

[3]

Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319

[4]

Eleonora Cinti. Saddle-shaped solutions for the fractional Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 441-463. doi: 10.3934/dcdss.2018024

[5]

Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703

[6]

Jun Yang, Xiaolin Yang. Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation in higher dimensional domains. Communications on Pure & Applied Analysis, 2013, 12 (1) : 303-340. doi: 10.3934/cpaa.2013.12.303

[7]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[8]

Giorgio Fusco. Layered solutions to the vector Allen-Cahn equation in $\mathbb{R}^2$. Minimizers and heteroclinic connections. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1807-1841. doi: 10.3934/cpaa.2017088

[9]

Giorgio Fusco, Francesco Leonetti, Cristina Pignotti. On the asymptotic behavior of symmetric solutions of the Allen-Cahn equation in unbounded domains in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 725-742. doi: 10.3934/dcds.2017030

[10]

Michał Kowalczyk, Yong Liu, Frank Pacard. Towards classification of multiple-end solutions to the Allen-Cahn equation in $\mathbb{R}^2$. Networks & Heterogeneous Media, 2012, 7 (4) : 837-855. doi: 10.3934/nhm.2012.7.837

[11]

Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015

[12]

Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems & Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679

[13]

Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009

[14]

Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407

[15]

Charles-Edouard Bréhier, Ludovic Goudenège. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4169-4190. doi: 10.3934/dcdsb.2019077

[16]

Yan Hu. Layer solutions for an Allen-Cahn type system driven by the fractional Laplacian. Communications on Pure & Applied Analysis, 2016, 15 (3) : 947-964. doi: 10.3934/cpaa.2016.15.947

[17]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[18]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[19]

Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027

[20]

Fang Li, Kimie Nakashima. Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1391-1420. doi: 10.3934/dcds.2012.32.1391

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]