March  2015, 14(2): 585-595. doi: 10.3934/cpaa.2015.14.585

Note on global regularity of 3D generalized magnetohydrodynamic-$\alpha$ model with zero diffusivity

1. 

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China

Received  June 2014 Revised  August 2014 Published  December 2014

In this paper we consider the Cauchy problem of a three-dimensional incompressible magnetohydrodynamic-$\alpha$ (MHD-$\alpha$) model with fractional velocity and zero magnetic diffusivity. We prove the global existence results of classical solutions for the model in the endpoint case with arbitrarily large initial data in Sobolev spaces.
Citation: Xiaojing Xu, Zhuan Ye. Note on global regularity of 3D generalized magnetohydrodynamic-$\alpha$ model with zero diffusivity. Communications on Pure and Applied Analysis, 2015, 14 (2) : 585-595. doi: 10.3934/cpaa.2015.14.585
References:
[1]

H. Brezis and S. Wainger, A note on limiting cases of Sobolev embedding and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789. doi: 10.1080/03605308008820154.

[2]

D. Catania, Global existence for a regularized magnetohydrodynamic-$\alpha$ model, Ann. Univ. Ferrara, 56 (2010), 1-20. doi: 10.1007/s11565-009-0069-1.

[3]

D. Catania, Finite dimensional global attractor for 3D MHD-$\alpha$ models: A comparison, J. Math. Fluid Mech, 14 (2012), 95-115. doi: 10.1007/s00021-010-0041-y.

[4]

C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226 (2011), 1803-1822. doi: 10.1016/j.aim.2010.08.017.

[5]

C. Cao, J. Wu and B, Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion, SIAM J. Math. Anal., 46 (2014), 588-602. doi: 10.1137/130937718.

[6]

Q. Jiu and J. Zhao, A remark on global regularity of 2D generalized magnetohydrodynamic equations, J. Math. Anal. Appl., 412 (2014), 478-484. doi: 10.1016/j.jmaa.2013.10.074.

[7]

Q. Jiu and J. Zhao, Global regularity of 2D generalized MHD equations with magnetic diffusion, Z. Angew. Math. Phys., (2014), 1-11.

[8]

J. Fan, H. Malaikah, S. Monaquel, Nakamura and Y. Zhou, Global Cauchy problem of 2D generalized MHD equations, Monatsh. Math., (2013), 1-5.

[9]

J. Fan and T. Ozawa, Global Cauchy problem for the 2-D magnetohydrodynamic-$\alpha$ models with partial viscous terms, J. Math. Fluid Mech., 12 (2010), 306-319. doi: 10.1007/s00021-008-0289-7.

[10]

D. Holm, Average Lagrangians and the mean effects of fluctuations in ideal fluid dynamics, Physica D, 170 (2002), 253-286. doi: 10.1016/S0167-2789(02)00552-3.

[11]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704.

[12]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequal-ities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278. doi: 10.1007/s002090100332.

[13]

J. S. Linshiz and E. S. Titi, Analytical study of certain magnetohydrodynamic-$\alpha$ models, J. Math. Phys., 48 (2007), 065504. doi: 10.1063/1.2360145.

[14]

J. S. Linshiz and E. S. Titi, On the convergence rate of the Euler-$\alpha$, an inviscid second-grade complex fluid, model to the Euler equations, J. Stat. Phys., 138 (2010), 305-332. doi: 10.1007/s10955-009-9916-9.

[15]

A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2001.

[16]

C. V. Tran, X. Yu and Z. Zhai, Note on solution regularity of the generalized magnetohydrodynamic equations with partial dissipation, Nonlinear Anal., 85 (2013), 43-51. doi: 10.1016/j.na.2013.02.019.

[17]

C. V. Tran, X. Yu and Z. Zhai, On global regularity of 2D generalized magnetodydrodynamics equations, J. Differential. Equations, 254 (2013), 4194-4216. doi: 10.1016/j.jde.2013.02.016.

[18]

G. Wu, Regularity criteria for the 3D generalized MHD equations in terms of vorticity, Nonlinear Anal., 71 (2009), 4251-4258. doi: 10.1016/j.na.2009.02.115.

[19]

J. Wu, The generalized MHD equations, J. Differential Equations, 195 (2003), 284-312. doi: 10.1016/j.jde.2003.07.007.

[20]

J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech., 13 (2011), 295-305. doi: 10.1007/s00021-009-0017-y.

[21]

K. Yamazaki, On the global regularity of generalized Leray-alpha type models, Nonlinear Anal., 75 (2012), 503-515. doi: 10.1016/j.na.2011.08.051.

[22]

K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity, Appl. Math. Lett., 29 (2014), 46-51. doi: 10.1016/j.aml.2013.10.014.

[23]

K. Yamazaki, A remark on the two-dimensional magnetohydrodynamics-alpha system, http://arxiv.org/abs/1401.6237v1.

[24]

Z. Ye and X. Xu, Global regularity of the two-dimensional incompressible generalized magnetohydrodynamics system, Nonlinear Anal., 100 (2014), 86-96. doi: 10.1016/j.na.2014.01.012.

[25]

Z. Ye and X. Xu, Global regularity of 3D generalized incompressible magnetohydrodynamic-$\alpha$ model, Appl. Math. Lett., 35 (2014), 1-6. doi: 10.1016/j.aml.2014.03.018.

[26]

B. Yuan and L. Bai, Remarks on global regularity of 2D generalized MHD equations, J. Math. Anal. Appl., 413 (2014), 633-640. doi: 10.1016/j.jmaa.2013.12.024.

[27]

J. Zhao and M. Zhu, Global regularity for the incompressible MHD-$\alpha$ system with fractional diffusion, Appl. Math. Lett., 29 (2014), 26-29. doi: 10.1016/j.aml.2013.10.009.

[28]

Y. Zhou and J. Fan, Global well-posedness for two modified-Leray-$\alpha$-MHD models with partial viscous terms, Math. Meth. Appl. Sci., 33 (2010), 856-862. doi: 10.1002/mma.1198.

[29]

Y. Zhou and J. Fan, On the Cauchy problem for a Leray-$\alpha$-MHD model, Nonlinear Anal., 12 (2011), 648-657. doi: 10.1016/j.nonrwa.2010.07.007.

[30]

Y. Zhou and J. Fan, Regularity criteria for a magnetohydrodynamical-$\alpha$ model, Commun. Pure Appl. Anal., 10 (2011), 309-326. doi: 10.3934/cpaa.2011.10.309.

show all references

References:
[1]

H. Brezis and S. Wainger, A note on limiting cases of Sobolev embedding and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789. doi: 10.1080/03605308008820154.

[2]

D. Catania, Global existence for a regularized magnetohydrodynamic-$\alpha$ model, Ann. Univ. Ferrara, 56 (2010), 1-20. doi: 10.1007/s11565-009-0069-1.

[3]

D. Catania, Finite dimensional global attractor for 3D MHD-$\alpha$ models: A comparison, J. Math. Fluid Mech, 14 (2012), 95-115. doi: 10.1007/s00021-010-0041-y.

[4]

C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226 (2011), 1803-1822. doi: 10.1016/j.aim.2010.08.017.

[5]

C. Cao, J. Wu and B, Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion, SIAM J. Math. Anal., 46 (2014), 588-602. doi: 10.1137/130937718.

[6]

Q. Jiu and J. Zhao, A remark on global regularity of 2D generalized magnetohydrodynamic equations, J. Math. Anal. Appl., 412 (2014), 478-484. doi: 10.1016/j.jmaa.2013.10.074.

[7]

Q. Jiu and J. Zhao, Global regularity of 2D generalized MHD equations with magnetic diffusion, Z. Angew. Math. Phys., (2014), 1-11.

[8]

J. Fan, H. Malaikah, S. Monaquel, Nakamura and Y. Zhou, Global Cauchy problem of 2D generalized MHD equations, Monatsh. Math., (2013), 1-5.

[9]

J. Fan and T. Ozawa, Global Cauchy problem for the 2-D magnetohydrodynamic-$\alpha$ models with partial viscous terms, J. Math. Fluid Mech., 12 (2010), 306-319. doi: 10.1007/s00021-008-0289-7.

[10]

D. Holm, Average Lagrangians and the mean effects of fluctuations in ideal fluid dynamics, Physica D, 170 (2002), 253-286. doi: 10.1016/S0167-2789(02)00552-3.

[11]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704.

[12]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequal-ities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278. doi: 10.1007/s002090100332.

[13]

J. S. Linshiz and E. S. Titi, Analytical study of certain magnetohydrodynamic-$\alpha$ models, J. Math. Phys., 48 (2007), 065504. doi: 10.1063/1.2360145.

[14]

J. S. Linshiz and E. S. Titi, On the convergence rate of the Euler-$\alpha$, an inviscid second-grade complex fluid, model to the Euler equations, J. Stat. Phys., 138 (2010), 305-332. doi: 10.1007/s10955-009-9916-9.

[15]

A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2001.

[16]

C. V. Tran, X. Yu and Z. Zhai, Note on solution regularity of the generalized magnetohydrodynamic equations with partial dissipation, Nonlinear Anal., 85 (2013), 43-51. doi: 10.1016/j.na.2013.02.019.

[17]

C. V. Tran, X. Yu and Z. Zhai, On global regularity of 2D generalized magnetodydrodynamics equations, J. Differential. Equations, 254 (2013), 4194-4216. doi: 10.1016/j.jde.2013.02.016.

[18]

G. Wu, Regularity criteria for the 3D generalized MHD equations in terms of vorticity, Nonlinear Anal., 71 (2009), 4251-4258. doi: 10.1016/j.na.2009.02.115.

[19]

J. Wu, The generalized MHD equations, J. Differential Equations, 195 (2003), 284-312. doi: 10.1016/j.jde.2003.07.007.

[20]

J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech., 13 (2011), 295-305. doi: 10.1007/s00021-009-0017-y.

[21]

K. Yamazaki, On the global regularity of generalized Leray-alpha type models, Nonlinear Anal., 75 (2012), 503-515. doi: 10.1016/j.na.2011.08.051.

[22]

K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity, Appl. Math. Lett., 29 (2014), 46-51. doi: 10.1016/j.aml.2013.10.014.

[23]

K. Yamazaki, A remark on the two-dimensional magnetohydrodynamics-alpha system, http://arxiv.org/abs/1401.6237v1.

[24]

Z. Ye and X. Xu, Global regularity of the two-dimensional incompressible generalized magnetohydrodynamics system, Nonlinear Anal., 100 (2014), 86-96. doi: 10.1016/j.na.2014.01.012.

[25]

Z. Ye and X. Xu, Global regularity of 3D generalized incompressible magnetohydrodynamic-$\alpha$ model, Appl. Math. Lett., 35 (2014), 1-6. doi: 10.1016/j.aml.2014.03.018.

[26]

B. Yuan and L. Bai, Remarks on global regularity of 2D generalized MHD equations, J. Math. Anal. Appl., 413 (2014), 633-640. doi: 10.1016/j.jmaa.2013.12.024.

[27]

J. Zhao and M. Zhu, Global regularity for the incompressible MHD-$\alpha$ system with fractional diffusion, Appl. Math. Lett., 29 (2014), 26-29. doi: 10.1016/j.aml.2013.10.009.

[28]

Y. Zhou and J. Fan, Global well-posedness for two modified-Leray-$\alpha$-MHD models with partial viscous terms, Math. Meth. Appl. Sci., 33 (2010), 856-862. doi: 10.1002/mma.1198.

[29]

Y. Zhou and J. Fan, On the Cauchy problem for a Leray-$\alpha$-MHD model, Nonlinear Anal., 12 (2011), 648-657. doi: 10.1016/j.nonrwa.2010.07.007.

[30]

Y. Zhou and J. Fan, Regularity criteria for a magnetohydrodynamical-$\alpha$ model, Commun. Pure Appl. Anal., 10 (2011), 309-326. doi: 10.3934/cpaa.2011.10.309.

[1]

Jishan Fan, Tohru Ozawa. Global Cauchy problem of an ideal density-dependent MHD-$\alpha$ model. Conference Publications, 2011, 2011 (Special) : 400-409. doi: 10.3934/proc.2011.2011.400

[2]

Fei Chen, Yongsheng Li, Huan Xu. Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 2945-2967. doi: 10.3934/dcds.2016.36.2945

[3]

Sadek Gala. A new regularity criterion for the 3D MHD equations in $R^3$. Communications on Pure and Applied Analysis, 2012, 11 (3) : 973-980. doi: 10.3934/cpaa.2012.11.973

[4]

Quansen Jiu, Jitao Liu. Global regularity for the 3D axisymmetric MHD Equations with horizontal dissipation and vertical magnetic diffusion. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 301-322. doi: 10.3934/dcds.2015.35.301

[5]

Jiahong Wu. Regularity results for weak solutions of the 3D MHD equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 543-556. doi: 10.3934/dcds.2004.10.543

[6]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. Kinetic and Related Models, 2012, 5 (3) : 505-516. doi: 10.3934/krm.2012.5.505

[7]

Ahmad Mohammad Alghamdi, Sadek Gala, Chenyin Qian, Maria Alessandra Ragusa. The anisotropic integrability logarithmic regularity criterion for the 3D MHD equations. Electronic Research Archive, 2020, 28 (1) : 183-193. doi: 10.3934/era.2020012

[8]

Feng Cheng, Chao-Jiang Xu. On the Gevrey regularity of solutions to the 3D ideal MHD equations. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6485-6506. doi: 10.3934/dcds.2019281

[9]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[10]

Edriss S. Titi, Saber Trabelsi. Global well-posedness of a 3D MHD model in porous media. Journal of Geometric Mechanics, 2019, 11 (4) : 621-637. doi: 10.3934/jgm.2019031

[11]

Junxiong Jia, Jigen Peng, Kexue Li. On the decay and stability of global solutions to the 3D inhomogeneous MHD system. Communications on Pure and Applied Analysis, 2017, 16 (3) : 745-780. doi: 10.3934/cpaa.2017036

[12]

Tomás Caraballo, Antonio M. Márquez-Durán, José Real. Pullback and forward attractors for a 3D LANS$-\alpha$ model with delay. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 559-578. doi: 10.3934/dcds.2006.15.559

[13]

Jitao Liu. On the initial boundary value problem for certain 2D MHD-$\alpha$ equations without velocity viscosity. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1179-1191. doi: 10.3934/cpaa.2016.15.1179

[14]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure and Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[15]

Anne Bronzi, Ricardo Rosa. On the convergence of statistical solutions of the 3D Navier-Stokes-$\alpha$ model as $\alpha$ vanishes. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 19-49. doi: 10.3934/dcds.2014.34.19

[16]

Anthony Suen. Global regularity for the 3D compressible magnetohydrodynamics with general pressure. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2927-2943. doi: 10.3934/dcds.2022004

[17]

Jishan Fan, Tohru Ozawa. A regularity criterion for 3D density-dependent MHD system with zero viscosity. Conference Publications, 2015, 2015 (special) : 395-399. doi: 10.3934/proc.2015.0395

[18]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. II. Kinetic and Related Models, 2014, 7 (2) : 291-304. doi: 10.3934/krm.2014.7.291

[19]

Yong Zhou. Remarks on regularities for the 3D MHD equations. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 881-886. doi: 10.3934/dcds.2005.12.881

[20]

Fei Chen, Boling Guo, Xiaoping Zhai. Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density. Kinetic and Related Models, 2019, 12 (1) : 37-58. doi: 10.3934/krm.2019002

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]