-
Previous Article
Local and global existence results for the Navier-Stokes equations in the rotational framework
- CPAA Home
- This Issue
-
Next Article
Note on global regularity of 3D generalized magnetohydrodynamic-$\alpha$ model with zero diffusivity
$W$-Sobolev spaces: Higher order and regularity
1. | Departamento de Matemática, Universidade Federal da Paraíba, Cidade Universitária - Campus I, 58051-970, João Pessoa - PB, Brazil |
2. | Departamento de Matemática, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29075-910, Vitória - ES, Brazil |
References:
[1] |
A. Faggionato, M. Jara and C. Landim, Hydrodynamic behavior of one dimensional subdiffusive exclusion processes with random conductances,, \emph{Probability Theory and Related Fields}, 144 (2009), 633.
doi: 10.1007/s00440-008-0157-7. |
[2] |
J. Farfan, A. B. Simas and F. J. Valentim, Equilibrium fluctuations for exclusion processes with conductances in random environments,, \emph{Stochastic Processes and their Applications}, 120 (2010), 1535. Google Scholar |
[3] |
T. Franco, C. Landim, Hydrodynamic limit of gradient exclusion processes with conductances,, \emph{Archive for Rational Mechanics and Analysis}, 195 (2009), 409.
doi: 10.1007/s00205-008-0206-5. |
[4] |
M. Jara, C. Landim and A. Teixeira, Quenched scaling limits of trap models,, \emph{Annals of Probability}, 39 (2011), 176.
doi: 10.1214/10-AOP554. |
[5] |
J.-U. Löbus, Generalized second order differential operators,, \emph{Math. Nachr.}, 152 (1991), 229. Google Scholar |
[6] |
P. Mandl, Analytical treatment of one-dimensional Markov processes, Grundlehren der mathematischen Wissenschaften, 151,, Springer-Verlag, (1968).
|
[7] |
A. B. Simas and F. J. Valentim, $W$-Sobolev spaces,, \emph{Journal of Mathematical Analysis and Applications}, 382 (2011), 214. Google Scholar |
[8] |
A. B. Simas and F. J. Valentim, Homogenization of second-order generalized elliptic operators,, submitted for publication., (). Google Scholar |
[9] |
F. J. Valentim, Hydrodynamic limit of a $d$-dimensional exclusion process with conductances,, \emph{Ann. Inst. H. Poincar\'e Probab. Statist}, 48 (2012), 188. Google Scholar |
show all references
References:
[1] |
A. Faggionato, M. Jara and C. Landim, Hydrodynamic behavior of one dimensional subdiffusive exclusion processes with random conductances,, \emph{Probability Theory and Related Fields}, 144 (2009), 633.
doi: 10.1007/s00440-008-0157-7. |
[2] |
J. Farfan, A. B. Simas and F. J. Valentim, Equilibrium fluctuations for exclusion processes with conductances in random environments,, \emph{Stochastic Processes and their Applications}, 120 (2010), 1535. Google Scholar |
[3] |
T. Franco, C. Landim, Hydrodynamic limit of gradient exclusion processes with conductances,, \emph{Archive for Rational Mechanics and Analysis}, 195 (2009), 409.
doi: 10.1007/s00205-008-0206-5. |
[4] |
M. Jara, C. Landim and A. Teixeira, Quenched scaling limits of trap models,, \emph{Annals of Probability}, 39 (2011), 176.
doi: 10.1214/10-AOP554. |
[5] |
J.-U. Löbus, Generalized second order differential operators,, \emph{Math. Nachr.}, 152 (1991), 229. Google Scholar |
[6] |
P. Mandl, Analytical treatment of one-dimensional Markov processes, Grundlehren der mathematischen Wissenschaften, 151,, Springer-Verlag, (1968).
|
[7] |
A. B. Simas and F. J. Valentim, $W$-Sobolev spaces,, \emph{Journal of Mathematical Analysis and Applications}, 382 (2011), 214. Google Scholar |
[8] |
A. B. Simas and F. J. Valentim, Homogenization of second-order generalized elliptic operators,, submitted for publication., (). Google Scholar |
[9] |
F. J. Valentim, Hydrodynamic limit of a $d$-dimensional exclusion process with conductances,, \emph{Ann. Inst. H. Poincar\'e Probab. Statist}, 48 (2012), 188. Google Scholar |
[1] |
Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184 |
[2] |
José F. Cariñena, Javier de Lucas Araujo. Superposition rules and second-order Riccati equations. Journal of Geometric Mechanics, 2011, 3 (1) : 1-22. doi: 10.3934/jgm.2011.3.1 |
[3] |
Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control & Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003 |
[4] |
Olivier Druet, Emmanuel Hebey and Frederic Robert. A $C^0$-theory for the blow-up of second order elliptic equations of critical Sobolev growth. Electronic Research Announcements, 2003, 9: 19-25. |
[5] |
W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209 |
[6] |
José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213 |
[7] |
Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609 |
[8] |
Jaume Llibre, Amar Makhlouf. Periodic solutions of some classes of continuous second-order differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 477-482. doi: 10.3934/dcdsb.2017022 |
[9] |
M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Second-order evolution equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4239-4247. doi: 10.3934/dcds.2017181 |
[10] |
Alain Haraux, Mitsuharu Ôtani. Analyticity and regularity for a class of second order evolution equations. Evolution Equations & Control Theory, 2013, 2 (1) : 101-117. doi: 10.3934/eect.2013.2.101 |
[11] |
Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Selfadjointness of degenerate elliptic operators on higher order Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 581-593. doi: 10.3934/dcdss.2011.4.581 |
[12] |
Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893 |
[13] |
Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747 |
[14] |
Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure & Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761 |
[15] |
Doyoon Kim, Seungjin Ryu. The weak maximum principle for second-order elliptic and parabolic conormal derivative problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 493-510. doi: 10.3934/cpaa.2020024 |
[16] |
Byungsoo Kang, Hyunseok Kim. W1, p-estimates for elliptic equations with lower order terms. Communications on Pure & Applied Analysis, 2017, 16 (3) : 799-822. doi: 10.3934/cpaa.2017038 |
[17] |
Eugenii Shustin, Emilia Fridman, Leonid Fridman. Oscillations in a second-order discontinuous system with delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 339-358. doi: 10.3934/dcds.2003.9.339 |
[18] |
Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299 |
[19] |
Maria Do Rosario Grossinho, Rogério Martins. Subharmonic oscillations for some second-order differential equations without Landesman-Lazer conditions. Conference Publications, 2001, 2001 (Special) : 174-181. doi: 10.3934/proc.2001.2001.174 |
[20] |
Lassi Roininen, Petteri Piiroinen, Markku Lehtinen. Constructing continuous stationary covariances as limits of the second-order stochastic difference equations. Inverse Problems & Imaging, 2013, 7 (2) : 611-647. doi: 10.3934/ipi.2013.7.611 |
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]