Citation: |
[1] |
H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer Grundlehren der mathematischen Wissenschaften, (2011), 343.doi: 10.1007/978-3-642-16830-7. |
[2] |
A. Babin, A. Mahalov and B. Nicolaenko, Regularity and integrability of 3D Euler and Navier-Stokes equations for rotating fluids, Asymptot. Anal., 15 (1997), 103-150. |
[3] |
A. Babin, A. Mahalov and B. Nicolaenko, Global regularity of 3D rotating Navier-Stokes equations for resonant domains, Indiana Univ. Math. J., 48 (1999), 1133-1176.doi: 10.1016/S0893-9659(99)00208-6. |
[4] |
J. M. Bony, Calcul symbolique et propagation des singularités pour équations aux dérivées partielles nonlinéaires, Ann. Sci. L'École Normale Supérieure, 14 (1981), 209-246. |
[5] |
M. Cannone and Y. Meyer, Littlewood-Paley decompositions and Navier-Stokes Equations, Methods and Application in Analysis, 2 (1997), 307-319. |
[6] |
J. Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Mathematical Geophysics, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2006. |
[7] |
M. Cannone and G. Karch, Smooth or singular solutions to the Navier-Stokes system, J. Diff. Equ., (2004), 247-274.doi: 10.1016/j.jde.2003.10.003. |
[8] |
Q. Chen, C. Miao and Z. Zhang, Global well-posedness for the 3D rotating Navier-Stokes equations with highly oscillating initial data, Pacific Journal of Mathematics, (2013), 263-283.doi: 10.2140/pjm.2013.262.263. |
[9] |
D. Fang, B. Han and M. Hieber, Global existence results for the Navier-Stokes equations in the rotational framework in Fourier-Besov spaces, in W. Arendt, R. Chill, Y. Tomilov (Eds.),Operator Semogroups meet Complex Analysis, Harmonic Analysis and Mathematical Physics, Birkhauser, to appear. |
[10] |
D. Fang, S. Wang and T. Zhang, Wellposedness for anisotropic rotating fuid equations, Appl. Math. J. Chinese Univ., 27 (2012), 9-33.doi: 10.1007/s11766-012-2534-3. |
[11] |
Y. Giga, K. Inui, A. Mahalov and J. Saal, Global solvabiliy of the Navier-Stokes equations in spaces based on sum-closed frequency sets, Adv. Diff. Equ., (2007), 721-736. |
[12] |
Y. Giga, K. Inui, A. Mahalov and J. Saal, Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data, Indiana Univ. Math. J., (2008), 2775-2791.doi: 10.1512/iumj.2008.57.3795. |
[13] |
G. Gui and P. Zhang, Stability to the global solutions of 3-D Navier-Stokes equations, Adv. Math., (2010), 1248-1284.doi: 10.1016/j.aim.2010.03.022. |
[14] |
M. Hieber and Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Math. Z., (2010), 481-491.doi: 10.1007/s00209-009-0525-8. |
[15] |
Y. Koh, S. Lee and R. Takada, Dispersive estimates for the Navier-Stokes equations in the rotational framework, Adv. Diff. Equations, 19 (2014), 857-878. |
[16] |
P. Konieczny and T. Yoneda, On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Diff. Equ., (2011), 3859-3873.doi: 10.1016/j.jde.2011.01.003. |
[17] |
A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes in Math., 2003. |
[18] |
M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces, Comm. Math. Phys., (2011), 713-759.doi: 10.1007/s00220-011-1350-6. |
[19] |
T. Iwabuchi and R. Takada, Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, Journal of Functional Analysis, 5 (2014), 1321-1337.doi: 10.1016/j.jfa.2014.05.022. |
[20] |
H. Triebel, Theory of Function Spaces, Monographs in Mathematics, Birkhäuser Verlag, Basel, 1983.doi: 10.1007/978-3-0346-0416-1. |
[21] |
T. Zhang, Global wellposedness problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space, Comm. Math. Phys., (2009), 211-224.doi: 10.1007/s00220-008-0631-1. |