• Previous Article
    Mean oscillation and boundedness of Toeplitz Type operators associated to pseudo-differential operators
  • CPAA Home
  • This Issue
  • Next Article
    Local and global existence results for the Navier-Stokes equations in the rotational framework
March  2015, 14(2): 623-626. doi: 10.3934/cpaa.2015.14.623

A note on the unique continuation property for fully nonlinear elliptic equations

1. 

Department of Mathematics, University of California, Irvine, CA 92697, United States

Received  June 2014 Revised  August 2014 Published  December 2014

We establish the strong unique continuation property for solutions to (1.1) where $F$ satisfies the structural assumptions A)-D). This extends a recent result of Armstrong and Silvestre (see [3]) where $F$ was assumed to be independent of $x$. We also establish an analogous unique continuation result at the boundary along the lines of [1] when the domain is $C^{3, \alpha}$.
Citation: Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623
References:
[1]

V. Adolfsson and L. Escauriaza, $C^{1, \alpha}$ domains and unique continuation at the boundary,, \emph{Comm. Pure Appl. Math.}, 50 (1997), 935.  doi: 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H.  Google Scholar

[2]

N. Aronszajn, A. Krzywicki and J. Szarski, A unique continuation theorem for exterior differential forms on Riemannian manifolds,, \emph{Ark. Mat.}, 4 (1962), 417.   Google Scholar

[3]

S. N. Armstrong and L. Silvestre, Unique continuation for fully nonlinear elliptic equations,, \emph{Math. Res. Lett.}, 18 (2011), 921.  doi: 10.4310/MRL.2011.v18.n5.a9.  Google Scholar

[4]

X. Cabre and L. Caffarelli, Fully Nonlinear Elliptic Equations,, Volume 43 of American Mathematical Society Colloquium Publications. \textbf{43} American Mathematical Society, 43 (1995), 0.   Google Scholar

[5]

N. Garofalo and F. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation,, \emph{Indiana Univ. Math. J.}, 35 (1986), 245.  doi: 10.1512/iumj.1986.35.35015.  Google Scholar

[6]

N. Garofalo and F. Lin, Unique continuation for elliptic operators: a geometric-variational approach,, \emph{Comm. Pure Appl. Math.}, 40 (1987), 347.  doi: 10.1002/cpa.3160400305.  Google Scholar

[7]

I. Kukavica and K. Nystrom, Unique continuation at the boundary for Dini domains,, \emph{Proc. Amer. Math. Soc.}, 126 (1998), 441.  doi: 10.1090/S0002-9939-98-04065-9.  Google Scholar

[8]

G. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996), 981.  doi: 10.1142/3302.  Google Scholar

[9]

N. Nadirashvili and S. Vlădut, Singular solutions of Hessian fully nonlinear elliptic equations,, \emph{Adv. Math.}, 228 (2011), 1718.  doi: 10.1016/j.aim.2011.06.030.  Google Scholar

[10]

O. Savin, Small perturbation solutions for elliptic equations,, \emph{Comm. Partial Differential Equations}, 32 (2007), 557.  doi: 10.1080/03605300500394405.  Google Scholar

[11]

L. Silvestre and B. Sirakov, Boundary regularity for viscosity solutions of fully nonlinear elliptic equations,, http://arxiv.org/pdf/1306.6672.pdf., ().  doi: 10.1080/03605302.2013.842249.  Google Scholar

show all references

References:
[1]

V. Adolfsson and L. Escauriaza, $C^{1, \alpha}$ domains and unique continuation at the boundary,, \emph{Comm. Pure Appl. Math.}, 50 (1997), 935.  doi: 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H.  Google Scholar

[2]

N. Aronszajn, A. Krzywicki and J. Szarski, A unique continuation theorem for exterior differential forms on Riemannian manifolds,, \emph{Ark. Mat.}, 4 (1962), 417.   Google Scholar

[3]

S. N. Armstrong and L. Silvestre, Unique continuation for fully nonlinear elliptic equations,, \emph{Math. Res. Lett.}, 18 (2011), 921.  doi: 10.4310/MRL.2011.v18.n5.a9.  Google Scholar

[4]

X. Cabre and L. Caffarelli, Fully Nonlinear Elliptic Equations,, Volume 43 of American Mathematical Society Colloquium Publications. \textbf{43} American Mathematical Society, 43 (1995), 0.   Google Scholar

[5]

N. Garofalo and F. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation,, \emph{Indiana Univ. Math. J.}, 35 (1986), 245.  doi: 10.1512/iumj.1986.35.35015.  Google Scholar

[6]

N. Garofalo and F. Lin, Unique continuation for elliptic operators: a geometric-variational approach,, \emph{Comm. Pure Appl. Math.}, 40 (1987), 347.  doi: 10.1002/cpa.3160400305.  Google Scholar

[7]

I. Kukavica and K. Nystrom, Unique continuation at the boundary for Dini domains,, \emph{Proc. Amer. Math. Soc.}, 126 (1998), 441.  doi: 10.1090/S0002-9939-98-04065-9.  Google Scholar

[8]

G. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996), 981.  doi: 10.1142/3302.  Google Scholar

[9]

N. Nadirashvili and S. Vlădut, Singular solutions of Hessian fully nonlinear elliptic equations,, \emph{Adv. Math.}, 228 (2011), 1718.  doi: 10.1016/j.aim.2011.06.030.  Google Scholar

[10]

O. Savin, Small perturbation solutions for elliptic equations,, \emph{Comm. Partial Differential Equations}, 32 (2007), 557.  doi: 10.1080/03605300500394405.  Google Scholar

[11]

L. Silvestre and B. Sirakov, Boundary regularity for viscosity solutions of fully nonlinear elliptic equations,, http://arxiv.org/pdf/1306.6672.pdf., ().  doi: 10.1080/03605302.2013.842249.  Google Scholar

[1]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[4]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[6]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[7]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[8]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[9]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[11]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[12]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[14]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[15]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[16]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[17]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[18]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[19]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[20]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]