-
Previous Article
Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain
- CPAA Home
- This Issue
-
Next Article
A note on the unique continuation property for fully nonlinear elliptic equations
Mean oscillation and boundedness of Toeplitz Type operators associated to pseudo-differential operators
1. | Department of Mathematics, Hunan University, Changsha 410082, China |
References:
[1] |
S. Chanillo, A note on commutators, Indiana Univ. Math. J., 31 (1982), 7-16.
doi: 10.1512/iumj.1982.31.31002. |
[2] |
S. Chanillo and A. Torchinsky, Sharp function and weighted $L^p$ estimates for a class of pseudo-differential operators, Ark. for Mat., 24 (1986), 1-25.
doi: 10.1007/BF02384387. |
[3] |
R. Coifman and Y. Meyer, Au delá des opérateurs pseudo-différentiels, Astérisque, 57 (1978). |
[4] |
R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976), 611-635. |
[5] |
C. Fefferman, $L^p$ bounds for pseudo-differential operators, Israel J. Math., 14 (1973), 413-417. |
[6] |
J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math., 116, Amsterdam, 1985. |
[7] |
S. Janson, Mean oscillation and commutators of singular integral operators, Ark. for Mat., 16 (1978), 263-270.
doi: 10.1007/BF02386000. |
[8] |
S. Janson and J. Peetre, Paracommutators boundedness and Schatten-von Neumann properties, Tran. Amer. Math. Soc., 305 (1988), 467-504.
doi: 10.2307/2000875. |
[9] |
S. Janson and J. Peetre, Higher order commutators of singular integral operators, Interpolation spaces and allied topics in analysis, Lecture Notes in Math., 1070, Springer, Berlin, 1984, 125-142.
doi: 10.1007/BFb0099097. |
[10] |
L. Z. Liu, Sharp and weighted boundedness for multilinear operators associated with pseudo-differential operators on Morrey space, J. of Contemporary Math. Analysis, 45 (2010), 136-150.
doi: 10.3103/S1068362310030039. |
[11] |
L. Z. Liu, Sharp maximal function inequalities and boundedness for Toeplitz type operator associated to pseudo-differential operator, J. of Pseudo-Differential Operators and Applications, 3 (2012), 329-350.
doi: 10.1007/s11868-012-0060-y. |
[12] |
N. Miller, Weighted Sobolev spaces and pseudo-differential operators with smooth symbols, Trans. Amer. Math. Soc., 269 (1982), 91-109.
doi: 10.2307/1998595. |
[13] |
M. Paluszynski, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J., 44 (1995), 1-17.
doi: 10.1512/iumj.1995.44.1976. |
[14] |
C. Pérez and G. Pradolini, Sharp weighted endpoint estimates for commutators of singular integral operators, Michigan Math. J., 49 (2001), 23-37.
doi: 10.1307/mmj/1008719033. |
[15] |
C. Pérez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc., 65 (2002), 672-692.
doi: 10.1112/S0024610702003174. |
[16] |
M. Saidani, A. Lahmar-Benbernou and S. Gala, Pseudo-differential operators and commutators in multiplier spaces, African Diaspora J. of Math., 6 (2008), 31-53. |
[17] |
E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton NJ, 1993. |
[18] |
M. E. Taylor, Pseudo-differential Operators and Nonlinear PDE, Birkhauser, Boston, 1991. |
show all references
References:
[1] |
S. Chanillo, A note on commutators, Indiana Univ. Math. J., 31 (1982), 7-16.
doi: 10.1512/iumj.1982.31.31002. |
[2] |
S. Chanillo and A. Torchinsky, Sharp function and weighted $L^p$ estimates for a class of pseudo-differential operators, Ark. for Mat., 24 (1986), 1-25.
doi: 10.1007/BF02384387. |
[3] |
R. Coifman and Y. Meyer, Au delá des opérateurs pseudo-différentiels, Astérisque, 57 (1978). |
[4] |
R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976), 611-635. |
[5] |
C. Fefferman, $L^p$ bounds for pseudo-differential operators, Israel J. Math., 14 (1973), 413-417. |
[6] |
J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math., 116, Amsterdam, 1985. |
[7] |
S. Janson, Mean oscillation and commutators of singular integral operators, Ark. for Mat., 16 (1978), 263-270.
doi: 10.1007/BF02386000. |
[8] |
S. Janson and J. Peetre, Paracommutators boundedness and Schatten-von Neumann properties, Tran. Amer. Math. Soc., 305 (1988), 467-504.
doi: 10.2307/2000875. |
[9] |
S. Janson and J. Peetre, Higher order commutators of singular integral operators, Interpolation spaces and allied topics in analysis, Lecture Notes in Math., 1070, Springer, Berlin, 1984, 125-142.
doi: 10.1007/BFb0099097. |
[10] |
L. Z. Liu, Sharp and weighted boundedness for multilinear operators associated with pseudo-differential operators on Morrey space, J. of Contemporary Math. Analysis, 45 (2010), 136-150.
doi: 10.3103/S1068362310030039. |
[11] |
L. Z. Liu, Sharp maximal function inequalities and boundedness for Toeplitz type operator associated to pseudo-differential operator, J. of Pseudo-Differential Operators and Applications, 3 (2012), 329-350.
doi: 10.1007/s11868-012-0060-y. |
[12] |
N. Miller, Weighted Sobolev spaces and pseudo-differential operators with smooth symbols, Trans. Amer. Math. Soc., 269 (1982), 91-109.
doi: 10.2307/1998595. |
[13] |
M. Paluszynski, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J., 44 (1995), 1-17.
doi: 10.1512/iumj.1995.44.1976. |
[14] |
C. Pérez and G. Pradolini, Sharp weighted endpoint estimates for commutators of singular integral operators, Michigan Math. J., 49 (2001), 23-37.
doi: 10.1307/mmj/1008719033. |
[15] |
C. Pérez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc., 65 (2002), 672-692.
doi: 10.1112/S0024610702003174. |
[16] |
M. Saidani, A. Lahmar-Benbernou and S. Gala, Pseudo-differential operators and commutators in multiplier spaces, African Diaspora J. of Math., 6 (2008), 31-53. |
[17] |
E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton NJ, 1993. |
[18] |
M. E. Taylor, Pseudo-differential Operators and Nonlinear PDE, Birkhauser, Boston, 1991. |
[1] |
Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1629-1645. doi: 10.3934/dcdsb.2021104 |
[2] |
Dinh Nguyen Duy Hai. Hölder-Logarithmic type approximation for nonlinear backward parabolic equations connected with a pseudo-differential operator. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1715-1734. doi: 10.3934/cpaa.2022043 |
[3] |
Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics and Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005 |
[4] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3043-3054. doi: 10.3934/dcdss.2020463 |
[5] |
Andi Kivinukk, Anna Saksa. On Rogosinski-type approximation processes in Banach space using the framework of the cosine operator function. Mathematical Foundations of Computing, 2022, 5 (3) : 197-218. doi: 10.3934/mfc.2021030 |
[6] |
Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems and Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169 |
[7] |
Mickaël D. Chekroun, Jean Roux. Homeomorphisms group of normed vector space: Conjugacy problems and the Koopman operator. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3957-3980. doi: 10.3934/dcds.2013.33.3957 |
[8] |
Nigel Higson and Gennadi Kasparov. Operator K-theory for groups which act properly and isometrically on Hilbert space. Electronic Research Announcements, 1997, 3: 131-142. |
[9] |
Ruyun Ma, Man Xu. Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2701-2718. doi: 10.3934/dcdsb.2018271 |
[10] |
Daniela Gurban, Petru Jebelean, Cǎlin Şerban. Non-potential and non-radial Dirichlet systems with mean curvature operator in Minkowski space. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 133-151. doi: 10.3934/dcds.2020006 |
[11] |
Daniel Grieser. A natural differential operator on conic spaces. Conference Publications, 2011, 2011 (Special) : 568-577. doi: 10.3934/proc.2011.2011.568 |
[12] |
Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure and Applied Analysis, 2021, 20 (2) : 801-815. doi: 10.3934/cpaa.2020291 |
[13] |
JIAO CHEN, WEI DAI, GUOZHEN LU. $L^p$ boundedness for maximal functions associated with multi-linear pseudo-differential operators. Communications on Pure and Applied Analysis, 2017, 16 (3) : 883-898. doi: 10.3934/cpaa.2017042 |
[14] |
Thomas Kappeler, Riccardo Montalto. Normal form coordinates for the Benjamin-Ono equation having expansions in terms of pseudo-differential operators. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022048 |
[15] |
Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055 |
[16] |
Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130 |
[17] |
Qianqian Xia. On embedding of subcartesian differential space and application. Journal of Geometric Mechanics, 2022 doi: 10.3934/jgm.2022007 |
[18] |
Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations and Control Theory, 2022, 11 (2) : 605-619. doi: 10.3934/eect.2021016 |
[19] |
Sabri Bahrouni, Hichem Ounaies. Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2917-2944. doi: 10.3934/dcds.2020155 |
[20] |
Feimin Zhong, Jinxing Xie, Jing Jiao. Solutions for bargaining games with incomplete information: General type space and action space. Journal of Industrial and Management Optimization, 2018, 14 (3) : 953-966. doi: 10.3934/jimo.2017084 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]