• Previous Article
    Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain
  • CPAA Home
  • This Issue
  • Next Article
    A note on the unique continuation property for fully nonlinear elliptic equations
March  2015, 14(2): 627-636. doi: 10.3934/cpaa.2015.14.627

Mean oscillation and boundedness of Toeplitz Type operators associated to pseudo-differential operators

1. 

Department of Mathematics, Hunan University, Changsha 410082, China

Received  January 2014 Revised  July 2014 Published  December 2014

In this paper, the boundedness from Lebesgue space to Orlicz space of certain Toeplitz type operator related to the pseudo-differential operator is obtained.
Citation: Lanzhe Liu. Mean oscillation and boundedness of Toeplitz Type operators associated to pseudo-differential operators. Communications on Pure & Applied Analysis, 2015, 14 (2) : 627-636. doi: 10.3934/cpaa.2015.14.627
References:
[1]

S. Chanillo, A note on commutators, Indiana Univ. Math. J., 31 (1982), 7-16. doi: 10.1512/iumj.1982.31.31002.  Google Scholar

[2]

S. Chanillo and A. Torchinsky, Sharp function and weighted $L^p$ estimates for a class of pseudo-differential operators, Ark. for Mat., 24 (1986), 1-25. doi: 10.1007/BF02384387.  Google Scholar

[3]

R. Coifman and Y. Meyer, Au delá des opérateurs pseudo-différentiels, Astérisque, 57 (1978).  Google Scholar

[4]

R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976), 611-635.  Google Scholar

[5]

C. Fefferman, $L^p$ bounds for pseudo-differential operators, Israel J. Math., 14 (1973), 413-417.  Google Scholar

[6]

J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math., 116, Amsterdam, 1985.  Google Scholar

[7]

S. Janson, Mean oscillation and commutators of singular integral operators, Ark. for Mat., 16 (1978), 263-270. doi: 10.1007/BF02386000.  Google Scholar

[8]

S. Janson and J. Peetre, Paracommutators boundedness and Schatten-von Neumann properties, Tran. Amer. Math. Soc., 305 (1988), 467-504. doi: 10.2307/2000875.  Google Scholar

[9]

S. Janson and J. Peetre, Higher order commutators of singular integral operators, Interpolation spaces and allied topics in analysis, Lecture Notes in Math., 1070, Springer, Berlin, 1984, 125-142. doi: 10.1007/BFb0099097.  Google Scholar

[10]

L. Z. Liu, Sharp and weighted boundedness for multilinear operators associated with pseudo-differential operators on Morrey space, J. of Contemporary Math. Analysis, 45 (2010), 136-150. doi: 10.3103/S1068362310030039.  Google Scholar

[11]

L. Z. Liu, Sharp maximal function inequalities and boundedness for Toeplitz type operator associated to pseudo-differential operator, J. of Pseudo-Differential Operators and Applications, 3 (2012), 329-350. doi: 10.1007/s11868-012-0060-y.  Google Scholar

[12]

N. Miller, Weighted Sobolev spaces and pseudo-differential operators with smooth symbols, Trans. Amer. Math. Soc., 269 (1982), 91-109. doi: 10.2307/1998595.  Google Scholar

[13]

M. Paluszynski, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J., 44 (1995), 1-17. doi: 10.1512/iumj.1995.44.1976.  Google Scholar

[14]

C. Pérez and G. Pradolini, Sharp weighted endpoint estimates for commutators of singular integral operators, Michigan Math. J., 49 (2001), 23-37. doi: 10.1307/mmj/1008719033.  Google Scholar

[15]

C. Pérez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc., 65 (2002), 672-692. doi: 10.1112/S0024610702003174.  Google Scholar

[16]

M. Saidani, A. Lahmar-Benbernou and S. Gala, Pseudo-differential operators and commutators in multiplier spaces, African Diaspora J. of Math., 6 (2008), 31-53.  Google Scholar

[17]

E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton NJ, 1993.  Google Scholar

[18]

M. E. Taylor, Pseudo-differential Operators and Nonlinear PDE, Birkhauser, Boston, 1991. Google Scholar

show all references

References:
[1]

S. Chanillo, A note on commutators, Indiana Univ. Math. J., 31 (1982), 7-16. doi: 10.1512/iumj.1982.31.31002.  Google Scholar

[2]

S. Chanillo and A. Torchinsky, Sharp function and weighted $L^p$ estimates for a class of pseudo-differential operators, Ark. for Mat., 24 (1986), 1-25. doi: 10.1007/BF02384387.  Google Scholar

[3]

R. Coifman and Y. Meyer, Au delá des opérateurs pseudo-différentiels, Astérisque, 57 (1978).  Google Scholar

[4]

R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976), 611-635.  Google Scholar

[5]

C. Fefferman, $L^p$ bounds for pseudo-differential operators, Israel J. Math., 14 (1973), 413-417.  Google Scholar

[6]

J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math., 116, Amsterdam, 1985.  Google Scholar

[7]

S. Janson, Mean oscillation and commutators of singular integral operators, Ark. for Mat., 16 (1978), 263-270. doi: 10.1007/BF02386000.  Google Scholar

[8]

S. Janson and J. Peetre, Paracommutators boundedness and Schatten-von Neumann properties, Tran. Amer. Math. Soc., 305 (1988), 467-504. doi: 10.2307/2000875.  Google Scholar

[9]

S. Janson and J. Peetre, Higher order commutators of singular integral operators, Interpolation spaces and allied topics in analysis, Lecture Notes in Math., 1070, Springer, Berlin, 1984, 125-142. doi: 10.1007/BFb0099097.  Google Scholar

[10]

L. Z. Liu, Sharp and weighted boundedness for multilinear operators associated with pseudo-differential operators on Morrey space, J. of Contemporary Math. Analysis, 45 (2010), 136-150. doi: 10.3103/S1068362310030039.  Google Scholar

[11]

L. Z. Liu, Sharp maximal function inequalities and boundedness for Toeplitz type operator associated to pseudo-differential operator, J. of Pseudo-Differential Operators and Applications, 3 (2012), 329-350. doi: 10.1007/s11868-012-0060-y.  Google Scholar

[12]

N. Miller, Weighted Sobolev spaces and pseudo-differential operators with smooth symbols, Trans. Amer. Math. Soc., 269 (1982), 91-109. doi: 10.2307/1998595.  Google Scholar

[13]

M. Paluszynski, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J., 44 (1995), 1-17. doi: 10.1512/iumj.1995.44.1976.  Google Scholar

[14]

C. Pérez and G. Pradolini, Sharp weighted endpoint estimates for commutators of singular integral operators, Michigan Math. J., 49 (2001), 23-37. doi: 10.1307/mmj/1008719033.  Google Scholar

[15]

C. Pérez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc., 65 (2002), 672-692. doi: 10.1112/S0024610702003174.  Google Scholar

[16]

M. Saidani, A. Lahmar-Benbernou and S. Gala, Pseudo-differential operators and commutators in multiplier spaces, African Diaspora J. of Math., 6 (2008), 31-53.  Google Scholar

[17]

E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton NJ, 1993.  Google Scholar

[18]

M. E. Taylor, Pseudo-differential Operators and Nonlinear PDE, Birkhauser, Boston, 1991. Google Scholar

[1]

Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021104

[2]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[3]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 3043-3054. doi: 10.3934/dcdss.2020463

[4]

Andi Kivinukk, Anna Saksa. On Rogosinski-type approximation processes in Banach space using the framework of the cosine operator function. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021030

[5]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[6]

Mickaël D. Chekroun, Jean Roux. Homeomorphisms group of normed vector space: Conjugacy problems and the Koopman operator. Discrete & Continuous Dynamical Systems, 2013, 33 (9) : 3957-3980. doi: 10.3934/dcds.2013.33.3957

[7]

Nigel Higson and Gennadi Kasparov. Operator K-theory for groups which act properly and isometrically on Hilbert space. Electronic Research Announcements, 1997, 3: 131-142.

[8]

Ruyun Ma, Man Xu. Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2701-2718. doi: 10.3934/dcdsb.2018271

[9]

Daniela Gurban, Petru Jebelean, Cǎlin Şerban. Non-potential and non-radial Dirichlet systems with mean curvature operator in Minkowski space. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 133-151. doi: 10.3934/dcds.2020006

[10]

Daniel Grieser. A natural differential operator on conic spaces. Conference Publications, 2011, 2011 (Special) : 568-577. doi: 10.3934/proc.2011.2011.568

[11]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, 2021, 20 (2) : 801-815. doi: 10.3934/cpaa.2020291

[12]

JIAO CHEN, WEI DAI, GUOZHEN LU. $L^p$ boundedness for maximal functions associated with multi-linear pseudo-differential operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 883-898. doi: 10.3934/cpaa.2017042

[13]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[14]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055

[15]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[16]

Feimin Zhong, Jinxing Xie, Jing Jiao. Solutions for bargaining games with incomplete information: General type space and action space. Journal of Industrial & Management Optimization, 2018, 14 (3) : 953-966. doi: 10.3934/jimo.2017084

[17]

Sabri Bahrouni, Hichem Ounaies. Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2917-2944. doi: 10.3934/dcds.2020155

[18]

Chuangxia Huang, Hedi Yang, Jinde Cao. Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1259-1272. doi: 10.3934/dcdss.2020372

[19]

Nakao Hayashi, Pavel I. Naumkin. Modified wave operator for Schrodinger type equations with subcritical dissipative nonlinearities. Inverse Problems & Imaging, 2007, 1 (2) : 391-398. doi: 10.3934/ipi.2007.1.391

[20]

Foued Mtiri. Liouville type theorems for stable solutions of elliptic system involving the Grushin operator. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021187

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]