March  2015, 14(2): 637-655. doi: 10.3934/cpaa.2015.14.637

Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain

1. 

Dipartimento di Matematica, Via F. Buonarroti 2, 56126 Pisa, Italy

2. 

Department of Applied Mathematics, Nanjing Forestry University, Nanjing, 210037

Received  January 2014 Revised  July 2014 Published  December 2014

In this paper, we prove some logarithmically improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain.
Citation: Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637
References:
[1]

R. A. Adams and J. F. Fournier, Sobolev Spaces,, 2$^{nd}$ ed., (2003).   Google Scholar

[2]

H. Beir ao da Veiga, Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space,, \emph{Indiana Univ. Math. J.}, 36 (1987), 149.  doi: 10.1512/iumj.1987.36.36008.  Google Scholar

[3]

H. Beir ao da Veiga and F. Crispo, Sharp inviscid limit results under Navier type boundary condition. An $L^p$ theory,, \emph{J. Math. Fluid Mech.}, 12 (2010), 397.  doi: 10.1007/s00021-009-0295-4.  Google Scholar

[4]

L. C. Berselli, On a regularity criterion for the solutions to the 3D Navier-Stokes equations,, \emph{Differential Integral Equations}, 15 (2002), 1129.   Google Scholar

[5]

L. C. Berselli, Some criteria concerning the vorticity and the problem of global regularity for the 3D Navier-Stokes equations,, \emph{Ann. Univ. Ferrara Sez. VII Sci. Mat.}, 55 (2009), 209.  doi: 10.1007/s11565-009-0076-2.  Google Scholar

[6]

L. C. Berselli and R. Manfrin, On a theorem by Sohr for the Navier-Stokes equations,, \emph{J. Evol. Equ.}, 4 (2004), 193.  doi: 10.1007/s00028-003-1135-2.  Google Scholar

[7]

L. C. Berselli and S. Spirito, On the Boussinesq system: Regularity criteria and singular limits,, \emph{Methods Appl. Anal.}, 18 (2011), 391.  doi: 10.4310/MAA.2011.v18.n4.a3.  Google Scholar

[8]

S. Chandrasekhar, Liquid Crystals,, Cambridge University Press, (1992).   Google Scholar

[9]

R. Danchin, Density-dependent incompressible fluids in bounded domains,, \emph{J. Math. Fluid Mech.}, 8 (2006), 333.  doi: 10.1007/s00021-004-0147-1.  Google Scholar

[10]

J. L. Ericksen, Hydrostatic theory of liquid crystals,, \emph{Arch. Ration. Mech. Anal.}, 9 (1962), 371.   Google Scholar

[11]

J. Fan, Y. Fukumoto and Y. Zhou, Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations,, \emph{Kinet. Relat. Models}, 6 (2013), 545.  doi: 10.3934/krm.2013.6.545.  Google Scholar

[12]

J. Fan, H. Gao and B. Guo, Regularity criteria for the Navier-Stokes-Landau-Lifshitz system,, \emph{J. Math. Anal. Appl.}, 363 (2010), 29.  doi: 10.1016/j.jmaa.2009.07.047.  Google Scholar

[13]

J. Fan, S. Jiang, G. Nakamura and Y. Zhou, Logarithmically improved regularity criteria for the Navier-Stokes and MHD equations,, \emph{J. Math. Fluid Mech.}, 13 (2011), 557.  doi: 10.1007/s00021-010-0039-5.  Google Scholar

[14]

J. Fan and T. Ozawa, Regularity criteria for the 3D density-dependent Boussinesq equations,, \emph{Nonlinearity}, 22 (2009), 553.  doi: 10.1088/0951-7715/22/3/003.  Google Scholar

[15]

F. Guillén-González, M. A. Rojas-Medar and M. A. Rodríguez-Bellido, Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model,, \emph{Math. Nachr.}, 282 (2009), 846.  doi: 10.1002/mana.200610776.  Google Scholar

[16]

H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations,, \emph{SIAM J. Math. Anal.}, 37 (2006), 1417.  doi: 10.1137/S0036141004442197.  Google Scholar

[17]

F. M. Leslie, Some constitutive equations for liquid crystals,, \emph{Arch. Ration. Mech. Anal.}, 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[18]

X. Li and D. Wang, Global strong solution to the density-dependent incompressible flow of liquid crystals,, \emph{Trans Amer. Math. Soc.}, ().   Google Scholar

[19]

F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, \emph{Comm. Pure Appl. Math}, 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[20]

A. Lunardi, Interpolation Theory,, Lecture Notes. Scuola Normale Superiore di Pisa (New Series), (2009).   Google Scholar

[21]

T. Ogawa, Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow,, \emph{SIAM J. Math. Anal.}, 34 (2003), 1318.  doi: 10.1137/S0036141001395868.  Google Scholar

[22]

T. Ogawa and Y. Taniuchi, A note on blow-up criterion to the 3D Euler equations in a bounded domain,, \emph{J. Diff. Equations}, 190 (2003), 39.  doi: 10.1016/S0022-0396(03)00013-5.  Google Scholar

[23]

H. Sohr, A regularity class for the Navier-Stokes equations in Lorentz spaces,, \emph{J. Evol. Equ.}, 1 (2001), 441.  doi: 10.1007/PL00001382.  Google Scholar

[24]

H. Triebel, Theory of Function Spaces,, Birkh\, (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[25]

Y. Zhou and S. Gala, Logarithmically improved regularity criteria for the Navier-Stokes equations in multiplier spaces,, \emph{J. Math. Anal. Appl.}, 356 (2009), 498.  doi: 10.1016/j.jmaa.2009.03.038.  Google Scholar

[26]

Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3D viscous MHD equations,, \emph{Forum Math.}, 24 (2012), 691.  doi: 10.1515/form.2011.079.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. F. Fournier, Sobolev Spaces,, 2$^{nd}$ ed., (2003).   Google Scholar

[2]

H. Beir ao da Veiga, Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space,, \emph{Indiana Univ. Math. J.}, 36 (1987), 149.  doi: 10.1512/iumj.1987.36.36008.  Google Scholar

[3]

H. Beir ao da Veiga and F. Crispo, Sharp inviscid limit results under Navier type boundary condition. An $L^p$ theory,, \emph{J. Math. Fluid Mech.}, 12 (2010), 397.  doi: 10.1007/s00021-009-0295-4.  Google Scholar

[4]

L. C. Berselli, On a regularity criterion for the solutions to the 3D Navier-Stokes equations,, \emph{Differential Integral Equations}, 15 (2002), 1129.   Google Scholar

[5]

L. C. Berselli, Some criteria concerning the vorticity and the problem of global regularity for the 3D Navier-Stokes equations,, \emph{Ann. Univ. Ferrara Sez. VII Sci. Mat.}, 55 (2009), 209.  doi: 10.1007/s11565-009-0076-2.  Google Scholar

[6]

L. C. Berselli and R. Manfrin, On a theorem by Sohr for the Navier-Stokes equations,, \emph{J. Evol. Equ.}, 4 (2004), 193.  doi: 10.1007/s00028-003-1135-2.  Google Scholar

[7]

L. C. Berselli and S. Spirito, On the Boussinesq system: Regularity criteria and singular limits,, \emph{Methods Appl. Anal.}, 18 (2011), 391.  doi: 10.4310/MAA.2011.v18.n4.a3.  Google Scholar

[8]

S. Chandrasekhar, Liquid Crystals,, Cambridge University Press, (1992).   Google Scholar

[9]

R. Danchin, Density-dependent incompressible fluids in bounded domains,, \emph{J. Math. Fluid Mech.}, 8 (2006), 333.  doi: 10.1007/s00021-004-0147-1.  Google Scholar

[10]

J. L. Ericksen, Hydrostatic theory of liquid crystals,, \emph{Arch. Ration. Mech. Anal.}, 9 (1962), 371.   Google Scholar

[11]

J. Fan, Y. Fukumoto and Y. Zhou, Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations,, \emph{Kinet. Relat. Models}, 6 (2013), 545.  doi: 10.3934/krm.2013.6.545.  Google Scholar

[12]

J. Fan, H. Gao and B. Guo, Regularity criteria for the Navier-Stokes-Landau-Lifshitz system,, \emph{J. Math. Anal. Appl.}, 363 (2010), 29.  doi: 10.1016/j.jmaa.2009.07.047.  Google Scholar

[13]

J. Fan, S. Jiang, G. Nakamura and Y. Zhou, Logarithmically improved regularity criteria for the Navier-Stokes and MHD equations,, \emph{J. Math. Fluid Mech.}, 13 (2011), 557.  doi: 10.1007/s00021-010-0039-5.  Google Scholar

[14]

J. Fan and T. Ozawa, Regularity criteria for the 3D density-dependent Boussinesq equations,, \emph{Nonlinearity}, 22 (2009), 553.  doi: 10.1088/0951-7715/22/3/003.  Google Scholar

[15]

F. Guillén-González, M. A. Rojas-Medar and M. A. Rodríguez-Bellido, Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model,, \emph{Math. Nachr.}, 282 (2009), 846.  doi: 10.1002/mana.200610776.  Google Scholar

[16]

H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations,, \emph{SIAM J. Math. Anal.}, 37 (2006), 1417.  doi: 10.1137/S0036141004442197.  Google Scholar

[17]

F. M. Leslie, Some constitutive equations for liquid crystals,, \emph{Arch. Ration. Mech. Anal.}, 28 (1968), 265.  doi: 10.1007/BF00251810.  Google Scholar

[18]

X. Li and D. Wang, Global strong solution to the density-dependent incompressible flow of liquid crystals,, \emph{Trans Amer. Math. Soc.}, ().   Google Scholar

[19]

F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, \emph{Comm. Pure Appl. Math}, 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[20]

A. Lunardi, Interpolation Theory,, Lecture Notes. Scuola Normale Superiore di Pisa (New Series), (2009).   Google Scholar

[21]

T. Ogawa, Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow,, \emph{SIAM J. Math. Anal.}, 34 (2003), 1318.  doi: 10.1137/S0036141001395868.  Google Scholar

[22]

T. Ogawa and Y. Taniuchi, A note on blow-up criterion to the 3D Euler equations in a bounded domain,, \emph{J. Diff. Equations}, 190 (2003), 39.  doi: 10.1016/S0022-0396(03)00013-5.  Google Scholar

[23]

H. Sohr, A regularity class for the Navier-Stokes equations in Lorentz spaces,, \emph{J. Evol. Equ.}, 1 (2001), 441.  doi: 10.1007/PL00001382.  Google Scholar

[24]

H. Triebel, Theory of Function Spaces,, Birkh\, (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[25]

Y. Zhou and S. Gala, Logarithmically improved regularity criteria for the Navier-Stokes equations in multiplier spaces,, \emph{J. Math. Anal. Appl.}, 356 (2009), 498.  doi: 10.1016/j.jmaa.2009.03.038.  Google Scholar

[26]

Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3D viscous MHD equations,, \emph{Forum Math.}, 24 (2012), 691.  doi: 10.1515/form.2011.079.  Google Scholar

[1]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[2]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[3]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[4]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[5]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[6]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[7]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[11]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[12]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[13]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[14]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[15]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[16]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[17]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[18]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[19]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[20]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]