-
Previous Article
Hopf bifurcation in an age-structured population model with two delays
- CPAA Home
- This Issue
-
Next Article
Mean oscillation and boundedness of Toeplitz Type operators associated to pseudo-differential operators
Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain
1. | Dipartimento di Matematica, Via F. Buonarroti 2, 56126 Pisa, Italy |
2. | Department of Applied Mathematics, Nanjing Forestry University, Nanjing, 210037 |
References:
[1] |
2nd ed., Elsevier/Academic Press, Amsterdam, 2003. |
[2] |
Indiana Univ. Math. J., 36 (1987), 149-166.
doi: 10.1512/iumj.1987.36.36008. |
[3] |
J. Math. Fluid Mech., 12 (2010), 397-411.
doi: 10.1007/s00021-009-0295-4. |
[4] |
Differential Integral Equations, 15 (2002), 1129-1137. |
[5] |
Ann. Univ. Ferrara Sez. VII Sci. Mat., 55 (2009), 209-224.
doi: 10.1007/s11565-009-0076-2. |
[6] |
J. Evol. Equ., 4 (2004), 193-211.
doi: 10.1007/s00028-003-1135-2. |
[7] |
Methods Appl. Anal., 18 (2011), 391-416.
doi: 10.4310/MAA.2011.v18.n4.a3. |
[8] |
Cambridge University Press, 2nd edition, 1992. Google Scholar |
[9] |
J. Math. Fluid Mech., 8 (2006), 333-381.
doi: 10.1007/s00021-004-0147-1. |
[10] |
Arch. Ration. Mech. Anal., 9 (1962), 371-378. |
[11] |
Kinet. Relat. Models, 6 (2013), 545-556.
doi: 10.3934/krm.2013.6.545. |
[12] |
J. Math. Anal. Appl., 363 (2010), 29-37.
doi: 10.1016/j.jmaa.2009.07.047. |
[13] |
J. Math. Fluid Mech., 13 (2011), 557-571.
doi: 10.1007/s00021-010-0039-5. |
[14] |
Nonlinearity, 22 (2009), 553-568.
doi: 10.1088/0951-7715/22/3/003. |
[15] |
Math. Nachr., 282 (2009), 846-867.
doi: 10.1002/mana.200610776. |
[16] |
SIAM J. Math. Anal., 37 (2006), 1417-1434.
doi: 10.1137/S0036141004442197. |
[17] |
Arch. Ration. Mech. Anal., 28 (1968), 265-283.
doi: 10.1007/BF00251810. |
[18] |
X. Li and D. Wang, Global strong solution to the density-dependent incompressible flow of liquid crystals,, \emph{Trans Amer. Math. Soc.}, (). Google Scholar |
[19] |
Comm. Pure Appl. Math, 48 (1995), 501-537.
doi: 10.1002/cpa.3160480503. |
[20] |
Lecture Notes. Scuola Normale Superiore di Pisa (New Series), 2nd ed., Edizioni della Normale, Pisa, 2009. |
[21] |
SIAM J. Math. Anal., 34 (2003), 1318-1330.
doi: 10.1137/S0036141001395868. |
[22] |
J. Diff. Equations, 190 (2003), 39-63.
doi: 10.1016/S0022-0396(03)00013-5. |
[23] |
J. Evol. Equ., 1 (2001), 441-467.
doi: 10.1007/PL00001382. |
[24] |
Birkhäuser, Basel, 1983.
doi: 10.1007/978-3-0346-0416-1. |
[25] |
J. Math. Anal. Appl., 356 (2009), 498-501.
doi: 10.1016/j.jmaa.2009.03.038. |
[26] |
Forum Math., 24 (2012), 691-708
doi: 10.1515/form.2011.079. |
show all references
References:
[1] |
2nd ed., Elsevier/Academic Press, Amsterdam, 2003. |
[2] |
Indiana Univ. Math. J., 36 (1987), 149-166.
doi: 10.1512/iumj.1987.36.36008. |
[3] |
J. Math. Fluid Mech., 12 (2010), 397-411.
doi: 10.1007/s00021-009-0295-4. |
[4] |
Differential Integral Equations, 15 (2002), 1129-1137. |
[5] |
Ann. Univ. Ferrara Sez. VII Sci. Mat., 55 (2009), 209-224.
doi: 10.1007/s11565-009-0076-2. |
[6] |
J. Evol. Equ., 4 (2004), 193-211.
doi: 10.1007/s00028-003-1135-2. |
[7] |
Methods Appl. Anal., 18 (2011), 391-416.
doi: 10.4310/MAA.2011.v18.n4.a3. |
[8] |
Cambridge University Press, 2nd edition, 1992. Google Scholar |
[9] |
J. Math. Fluid Mech., 8 (2006), 333-381.
doi: 10.1007/s00021-004-0147-1. |
[10] |
Arch. Ration. Mech. Anal., 9 (1962), 371-378. |
[11] |
Kinet. Relat. Models, 6 (2013), 545-556.
doi: 10.3934/krm.2013.6.545. |
[12] |
J. Math. Anal. Appl., 363 (2010), 29-37.
doi: 10.1016/j.jmaa.2009.07.047. |
[13] |
J. Math. Fluid Mech., 13 (2011), 557-571.
doi: 10.1007/s00021-010-0039-5. |
[14] |
Nonlinearity, 22 (2009), 553-568.
doi: 10.1088/0951-7715/22/3/003. |
[15] |
Math. Nachr., 282 (2009), 846-867.
doi: 10.1002/mana.200610776. |
[16] |
SIAM J. Math. Anal., 37 (2006), 1417-1434.
doi: 10.1137/S0036141004442197. |
[17] |
Arch. Ration. Mech. Anal., 28 (1968), 265-283.
doi: 10.1007/BF00251810. |
[18] |
X. Li and D. Wang, Global strong solution to the density-dependent incompressible flow of liquid crystals,, \emph{Trans Amer. Math. Soc.}, (). Google Scholar |
[19] |
Comm. Pure Appl. Math, 48 (1995), 501-537.
doi: 10.1002/cpa.3160480503. |
[20] |
Lecture Notes. Scuola Normale Superiore di Pisa (New Series), 2nd ed., Edizioni della Normale, Pisa, 2009. |
[21] |
SIAM J. Math. Anal., 34 (2003), 1318-1330.
doi: 10.1137/S0036141001395868. |
[22] |
J. Diff. Equations, 190 (2003), 39-63.
doi: 10.1016/S0022-0396(03)00013-5. |
[23] |
J. Evol. Equ., 1 (2001), 441-467.
doi: 10.1007/PL00001382. |
[24] |
Birkhäuser, Basel, 1983.
doi: 10.1007/978-3-0346-0416-1. |
[25] |
J. Math. Anal. Appl., 356 (2009), 498-501.
doi: 10.1016/j.jmaa.2009.03.038. |
[26] |
Forum Math., 24 (2012), 691-708
doi: 10.1515/form.2011.079. |
[1] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
[2] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[3] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[4] |
Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021093 |
[5] |
Hala Ghazi, François James, Hélène Mathis. A nonisothermal thermodynamical model of liquid-vapor interaction with metastability. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2371-2409. doi: 10.3934/dcdsb.2020183 |
[6] |
Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3045-3062. doi: 10.3934/dcds.2020397 |
[7] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[8] |
Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034 |
[9] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[10] |
Francesca Bucci. Improved boundary regularity for a Stokes-Lamé system. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021018 |
[11] |
Leon Mons. Partial regularity for parabolic systems with VMO-coefficients. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021041 |
[12] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
[13] |
Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021036 |
[14] |
Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018 |
[15] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[16] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[17] |
Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237 |
[18] |
Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021041 |
[19] |
Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270 |
[20] |
Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]