March  2015, 14(2): 637-655. doi: 10.3934/cpaa.2015.14.637

Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain

1. 

Dipartimento di Matematica, Via F. Buonarroti 2, 56126 Pisa, Italy

2. 

Department of Applied Mathematics, Nanjing Forestry University, Nanjing, 210037

Received  January 2014 Revised  July 2014 Published  December 2014

In this paper, we prove some logarithmically improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain.
Citation: Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637
References:
[1]

R. A. Adams and J. F. Fournier, Sobolev Spaces,, 2$^{nd}$ ed., (2003). Google Scholar

[2]

H. Beir ao da Veiga, Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space,, \emph{Indiana Univ. Math. J.}, 36 (1987), 149. doi: 10.1512/iumj.1987.36.36008. Google Scholar

[3]

H. Beir ao da Veiga and F. Crispo, Sharp inviscid limit results under Navier type boundary condition. An $L^p$ theory,, \emph{J. Math. Fluid Mech.}, 12 (2010), 397. doi: 10.1007/s00021-009-0295-4. Google Scholar

[4]

L. C. Berselli, On a regularity criterion for the solutions to the 3D Navier-Stokes equations,, \emph{Differential Integral Equations}, 15 (2002), 1129. Google Scholar

[5]

L. C. Berselli, Some criteria concerning the vorticity and the problem of global regularity for the 3D Navier-Stokes equations,, \emph{Ann. Univ. Ferrara Sez. VII Sci. Mat.}, 55 (2009), 209. doi: 10.1007/s11565-009-0076-2. Google Scholar

[6]

L. C. Berselli and R. Manfrin, On a theorem by Sohr for the Navier-Stokes equations,, \emph{J. Evol. Equ.}, 4 (2004), 193. doi: 10.1007/s00028-003-1135-2. Google Scholar

[7]

L. C. Berselli and S. Spirito, On the Boussinesq system: Regularity criteria and singular limits,, \emph{Methods Appl. Anal.}, 18 (2011), 391. doi: 10.4310/MAA.2011.v18.n4.a3. Google Scholar

[8]

S. Chandrasekhar, Liquid Crystals,, Cambridge University Press, (1992). Google Scholar

[9]

R. Danchin, Density-dependent incompressible fluids in bounded domains,, \emph{J. Math. Fluid Mech.}, 8 (2006), 333. doi: 10.1007/s00021-004-0147-1. Google Scholar

[10]

J. L. Ericksen, Hydrostatic theory of liquid crystals,, \emph{Arch. Ration. Mech. Anal.}, 9 (1962), 371. Google Scholar

[11]

J. Fan, Y. Fukumoto and Y. Zhou, Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations,, \emph{Kinet. Relat. Models}, 6 (2013), 545. doi: 10.3934/krm.2013.6.545. Google Scholar

[12]

J. Fan, H. Gao and B. Guo, Regularity criteria for the Navier-Stokes-Landau-Lifshitz system,, \emph{J. Math. Anal. Appl.}, 363 (2010), 29. doi: 10.1016/j.jmaa.2009.07.047. Google Scholar

[13]

J. Fan, S. Jiang, G. Nakamura and Y. Zhou, Logarithmically improved regularity criteria for the Navier-Stokes and MHD equations,, \emph{J. Math. Fluid Mech.}, 13 (2011), 557. doi: 10.1007/s00021-010-0039-5. Google Scholar

[14]

J. Fan and T. Ozawa, Regularity criteria for the 3D density-dependent Boussinesq equations,, \emph{Nonlinearity}, 22 (2009), 553. doi: 10.1088/0951-7715/22/3/003. Google Scholar

[15]

F. Guillén-González, M. A. Rojas-Medar and M. A. Rodríguez-Bellido, Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model,, \emph{Math. Nachr.}, 282 (2009), 846. doi: 10.1002/mana.200610776. Google Scholar

[16]

H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations,, \emph{SIAM J. Math. Anal.}, 37 (2006), 1417. doi: 10.1137/S0036141004442197. Google Scholar

[17]

F. M. Leslie, Some constitutive equations for liquid crystals,, \emph{Arch. Ration. Mech. Anal.}, 28 (1968), 265. doi: 10.1007/BF00251810. Google Scholar

[18]

X. Li and D. Wang, Global strong solution to the density-dependent incompressible flow of liquid crystals,, \emph{Trans Amer. Math. Soc.}, (). Google Scholar

[19]

F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, \emph{Comm. Pure Appl. Math}, 48 (1995), 501. doi: 10.1002/cpa.3160480503. Google Scholar

[20]

A. Lunardi, Interpolation Theory,, Lecture Notes. Scuola Normale Superiore di Pisa (New Series), (2009). Google Scholar

[21]

T. Ogawa, Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow,, \emph{SIAM J. Math. Anal.}, 34 (2003), 1318. doi: 10.1137/S0036141001395868. Google Scholar

[22]

T. Ogawa and Y. Taniuchi, A note on blow-up criterion to the 3D Euler equations in a bounded domain,, \emph{J. Diff. Equations}, 190 (2003), 39. doi: 10.1016/S0022-0396(03)00013-5. Google Scholar

[23]

H. Sohr, A regularity class for the Navier-Stokes equations in Lorentz spaces,, \emph{J. Evol. Equ.}, 1 (2001), 441. doi: 10.1007/PL00001382. Google Scholar

[24]

H. Triebel, Theory of Function Spaces,, Birkh\, (1983). doi: 10.1007/978-3-0346-0416-1. Google Scholar

[25]

Y. Zhou and S. Gala, Logarithmically improved regularity criteria for the Navier-Stokes equations in multiplier spaces,, \emph{J. Math. Anal. Appl.}, 356 (2009), 498. doi: 10.1016/j.jmaa.2009.03.038. Google Scholar

[26]

Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3D viscous MHD equations,, \emph{Forum Math.}, 24 (2012), 691. doi: 10.1515/form.2011.079. Google Scholar

show all references

References:
[1]

R. A. Adams and J. F. Fournier, Sobolev Spaces,, 2$^{nd}$ ed., (2003). Google Scholar

[2]

H. Beir ao da Veiga, Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space,, \emph{Indiana Univ. Math. J.}, 36 (1987), 149. doi: 10.1512/iumj.1987.36.36008. Google Scholar

[3]

H. Beir ao da Veiga and F. Crispo, Sharp inviscid limit results under Navier type boundary condition. An $L^p$ theory,, \emph{J. Math. Fluid Mech.}, 12 (2010), 397. doi: 10.1007/s00021-009-0295-4. Google Scholar

[4]

L. C. Berselli, On a regularity criterion for the solutions to the 3D Navier-Stokes equations,, \emph{Differential Integral Equations}, 15 (2002), 1129. Google Scholar

[5]

L. C. Berselli, Some criteria concerning the vorticity and the problem of global regularity for the 3D Navier-Stokes equations,, \emph{Ann. Univ. Ferrara Sez. VII Sci. Mat.}, 55 (2009), 209. doi: 10.1007/s11565-009-0076-2. Google Scholar

[6]

L. C. Berselli and R. Manfrin, On a theorem by Sohr for the Navier-Stokes equations,, \emph{J. Evol. Equ.}, 4 (2004), 193. doi: 10.1007/s00028-003-1135-2. Google Scholar

[7]

L. C. Berselli and S. Spirito, On the Boussinesq system: Regularity criteria and singular limits,, \emph{Methods Appl. Anal.}, 18 (2011), 391. doi: 10.4310/MAA.2011.v18.n4.a3. Google Scholar

[8]

S. Chandrasekhar, Liquid Crystals,, Cambridge University Press, (1992). Google Scholar

[9]

R. Danchin, Density-dependent incompressible fluids in bounded domains,, \emph{J. Math. Fluid Mech.}, 8 (2006), 333. doi: 10.1007/s00021-004-0147-1. Google Scholar

[10]

J. L. Ericksen, Hydrostatic theory of liquid crystals,, \emph{Arch. Ration. Mech. Anal.}, 9 (1962), 371. Google Scholar

[11]

J. Fan, Y. Fukumoto and Y. Zhou, Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations,, \emph{Kinet. Relat. Models}, 6 (2013), 545. doi: 10.3934/krm.2013.6.545. Google Scholar

[12]

J. Fan, H. Gao and B. Guo, Regularity criteria for the Navier-Stokes-Landau-Lifshitz system,, \emph{J. Math. Anal. Appl.}, 363 (2010), 29. doi: 10.1016/j.jmaa.2009.07.047. Google Scholar

[13]

J. Fan, S. Jiang, G. Nakamura and Y. Zhou, Logarithmically improved regularity criteria for the Navier-Stokes and MHD equations,, \emph{J. Math. Fluid Mech.}, 13 (2011), 557. doi: 10.1007/s00021-010-0039-5. Google Scholar

[14]

J. Fan and T. Ozawa, Regularity criteria for the 3D density-dependent Boussinesq equations,, \emph{Nonlinearity}, 22 (2009), 553. doi: 10.1088/0951-7715/22/3/003. Google Scholar

[15]

F. Guillén-González, M. A. Rojas-Medar and M. A. Rodríguez-Bellido, Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model,, \emph{Math. Nachr.}, 282 (2009), 846. doi: 10.1002/mana.200610776. Google Scholar

[16]

H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations,, \emph{SIAM J. Math. Anal.}, 37 (2006), 1417. doi: 10.1137/S0036141004442197. Google Scholar

[17]

F. M. Leslie, Some constitutive equations for liquid crystals,, \emph{Arch. Ration. Mech. Anal.}, 28 (1968), 265. doi: 10.1007/BF00251810. Google Scholar

[18]

X. Li and D. Wang, Global strong solution to the density-dependent incompressible flow of liquid crystals,, \emph{Trans Amer. Math. Soc.}, (). Google Scholar

[19]

F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, \emph{Comm. Pure Appl. Math}, 48 (1995), 501. doi: 10.1002/cpa.3160480503. Google Scholar

[20]

A. Lunardi, Interpolation Theory,, Lecture Notes. Scuola Normale Superiore di Pisa (New Series), (2009). Google Scholar

[21]

T. Ogawa, Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow,, \emph{SIAM J. Math. Anal.}, 34 (2003), 1318. doi: 10.1137/S0036141001395868. Google Scholar

[22]

T. Ogawa and Y. Taniuchi, A note on blow-up criterion to the 3D Euler equations in a bounded domain,, \emph{J. Diff. Equations}, 190 (2003), 39. doi: 10.1016/S0022-0396(03)00013-5. Google Scholar

[23]

H. Sohr, A regularity class for the Navier-Stokes equations in Lorentz spaces,, \emph{J. Evol. Equ.}, 1 (2001), 441. doi: 10.1007/PL00001382. Google Scholar

[24]

H. Triebel, Theory of Function Spaces,, Birkh\, (1983). doi: 10.1007/978-3-0346-0416-1. Google Scholar

[25]

Y. Zhou and S. Gala, Logarithmically improved regularity criteria for the Navier-Stokes equations in multiplier spaces,, \emph{J. Math. Anal. Appl.}, 356 (2009), 498. doi: 10.1016/j.jmaa.2009.03.038. Google Scholar

[26]

Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3D viscous MHD equations,, \emph{Forum Math.}, 24 (2012), 691. doi: 10.1515/form.2011.079. Google Scholar

[1]

Jishan Fan, Tohru Ozawa. Regularity criteria for a simplified Ericksen-Leslie system modeling the flow of liquid crystals. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 859-867. doi: 10.3934/dcds.2009.25.859

[2]

Tomoyuki Suzuki. Regularity criteria in weak spaces in terms of the pressure to the MHD equations. Conference Publications, 2011, 2011 (Special) : 1335-1343. doi: 10.3934/proc.2011.2011.1335

[3]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. Kinetic & Related Models, 2012, 5 (3) : 505-516. doi: 10.3934/krm.2012.5.505

[4]

Xuanji Jia, Yong Zhou. Regularity criteria for the 3D MHD equations via partial derivatives. II. Kinetic & Related Models, 2014, 7 (2) : 291-304. doi: 10.3934/krm.2014.7.291

[5]

Jishan Fan, Tohru Ozawa. Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-$\alpha$-MHD model. Kinetic & Related Models, 2009, 2 (2) : 293-305. doi: 10.3934/krm.2009.2.293

[6]

Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591

[7]

Kyungkeun Kang, Jinhae Park. Partial regularity of minimum energy configurations in ferroelectric liquid crystals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1499-1511. doi: 10.3934/dcds.2013.33.1499

[8]

Xian-Gao Liu, Jianzhong Min, Kui Wang, Xiaotao Zhang. Serrin's regularity results for the incompressible liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5579-5594. doi: 10.3934/dcds.2016045

[9]

Fanghua Lin, Chun Liu. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 1-22. doi: 10.3934/dcds.1996.2.1

[10]

Zdzisław Brzeźniak, Erika Hausenblas, Paul André Razafimandimby. A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5785-5802. doi: 10.3934/dcdsb.2019106

[11]

Jishan Fan, Tohru Ozawa. Regularity criteria for the 2D MHD system with horizontal dissipation and horizontal magnetic diffusion. Kinetic & Related Models, 2014, 7 (1) : 45-56. doi: 10.3934/krm.2014.7.45

[12]

Jishan Fan, Fucai Li, Gen Nakamura. Regularity criteria for the Boussinesq system with temperature-dependent viscosity and thermal diffusivity in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4915-4923. doi: 10.3934/dcds.2016012

[13]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[14]

Jiahong Wu. Regularity results for weak solutions of the 3D MHD equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 543-556. doi: 10.3934/dcds.2004.10.543

[15]

Sadek Gala. A new regularity criterion for the 3D MHD equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (3) : 973-980. doi: 10.3934/cpaa.2012.11.973

[16]

Dongfen Bian. Initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1591-1611. doi: 10.3934/dcdss.2016065

[17]

Zhengguang Guo, Sadek Gala. Regularity criterion of the Newton-Boussinesq equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 443-451. doi: 10.3934/cpaa.2012.11.443

[18]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[19]

Patrick Penel, Milan Pokorný. Improvement of some anisotropic regularity criteria for the Navier--Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1401-1407. doi: 10.3934/dcdss.2013.6.1401

[20]

Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]