• Previous Article
    Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system with cubic nonlinearities in $\mathbb{R}^2$
  • CPAA Home
  • This Issue
  • Next Article
    Hopf bifurcation in an age-structured population model with two delays
March  2015, 14(2): 677-693. doi: 10.3934/cpaa.2015.14.677

Refined blow-up results for nonlinear fourth order differential equations

1. 

Dipartimento di Matematica Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano

2. 

School of Mathematics, Trinity College, Dublin 2

Received  May 2014 Revised  October 2014 Published  December 2014

We study a class of nonlinear fourth order differential equations which arise as models of suspension bridges. When it comes to power-like nonlinearities, it is known that solutions may blow up in finite time, if the initial data satisfy some positivity assumption. We extend this result to more general nonlinearities allowing exponential growth and to a wider class of initial data. We also give some hints on how to prevent blow-up.
Citation: Filippo Gazzola, Paschalis Karageorgis. Refined blow-up results for nonlinear fourth order differential equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 677-693. doi: 10.3934/cpaa.2015.14.677
References:
[1]

C. J. Amick and J. F. Toland, Homoclinic orbits in the dynamic phase-space analogy of an elastic strut,, \emph{Eur. J. Appl. Math.}, 3 (1992), 97.  doi: 10.1017/S0956792500000735.  Google Scholar

[2]

E. Berchio, A. Ferrero, F. Gazzola and P. Karageorgis, Qualitative behavior of global solutions to some nonlinear fourth order differential equations,, \emph{J. Diff. Eq.}, 251 (2011), 2696.  doi: 10.1016/j.jde.2011.05.036.  Google Scholar

[3]

D. Bonheure, Multitransition kinks and pulses for fourth order equations with a bistable nonlinearity,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 21 (2004), 319.  doi: 10.1016/S0294-1449(03)00037-4.  Google Scholar

[4]

D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations,, \emph{Handbook of Diff. Eq.}, (2006), 103.  doi: 10.1016/S1874-5725(06)80006-4.  Google Scholar

[5]

J. M. W. Brownjohn, Observations on non-linear dynamic characteristics of suspension bridges,, \emph{Earthquake Engineering and Structural Dynamics}, 23 (1994), 1351.   Google Scholar

[6]

F. Gazzola, Nonlinearity in oscillating bridges,, \emph{Electron. J. Diff. Equ.}, 211 (2013), 1.   Google Scholar

[7]

F. Gazzola and H.-Ch. Grunau, Radial entire solutions for supercritical biharmonic equations,, \emph{Math. Ann.}, 334 (2006), 905.  doi: 10.1007/s00208-005-0748-x.  Google Scholar

[8]

F. Gazzola and R. Pavani, Blow up oscillating solutions to some nonlinear fourth order differential equations,, \emph{Nonlinear Analysis}, 74 (2011), 6696.  doi: 10.1016/j.na.2011.06.049.  Google Scholar

[9]

F. Gazzola and R. Pavani, Blow-up oscillating solutions to some nonlinear fourth order differential equations describing oscillations of suspension bridges,, IABMAS12, (2012), 3089.  doi: 10.1016/j.na.2011.06.049.  Google Scholar

[10]

F. Gazzola and R. Pavani, Wide oscillations finite time blow up for solutions to nonlinear fourth order differential equations,, \emph{Arch. Rat. Mech. Anal.}, 207 (2013), 717.  doi: 10.1007/s00205-012-0569-5.  Google Scholar

[11]

G. W. Hunt, H. M. Bolt and J. M. T. Thompson, Localisation and the dynamical phase-space analogy,, \emph{Proc. Roy. Soc. London A}, 425 (1989), 245.   Google Scholar

[12]

I. V. Ivanov, D. S. Velchev, M. Kneć and T. Sadowski, Computational models of laminated glass plate under transverse static loading,, In \emph{Shell-like Structures, ().   Google Scholar

[13]

P. Karageorgis and P. J. McKenna, The existence of ground states for fourth-order wave equations,, \emph{Nonlinear Analysis}, 73 (2010), 367.  doi: 10.1016/j.na.2010.03.025.  Google Scholar

[14]

W. Lacarbonara, Nonlinear Structural Mechanics,, Springer, (2013).  doi: 10.1007/978-1-4419-1276-3.  Google Scholar

[15]

L. A. Peletier and W. C. Troy, Spatial Patterns. Higher Order Models in Physics and Mechanics,, Progress in Nonlinear Differential Equations and their Applications \textbf{45}, 45 (2001).  doi: 10.1007/978-1-4612-0135-9.  Google Scholar

[16]

M. A. Peletier, Sequential buckling: a variational analysis,, \emph{SIAM J. Math. Anal.}, 32 (2001), 1142.  doi: 10.1137/S0036141099359925.  Google Scholar

[17]

R. H. Plaut and F. M. Davis, Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges,, \emph{J. Sound and Vibration}, 307 (2007), 894.   Google Scholar

show all references

References:
[1]

C. J. Amick and J. F. Toland, Homoclinic orbits in the dynamic phase-space analogy of an elastic strut,, \emph{Eur. J. Appl. Math.}, 3 (1992), 97.  doi: 10.1017/S0956792500000735.  Google Scholar

[2]

E. Berchio, A. Ferrero, F. Gazzola and P. Karageorgis, Qualitative behavior of global solutions to some nonlinear fourth order differential equations,, \emph{J. Diff. Eq.}, 251 (2011), 2696.  doi: 10.1016/j.jde.2011.05.036.  Google Scholar

[3]

D. Bonheure, Multitransition kinks and pulses for fourth order equations with a bistable nonlinearity,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 21 (2004), 319.  doi: 10.1016/S0294-1449(03)00037-4.  Google Scholar

[4]

D. Bonheure and L. Sanchez, Heteroclinic orbits for some classes of second and fourth order differential equations,, \emph{Handbook of Diff. Eq.}, (2006), 103.  doi: 10.1016/S1874-5725(06)80006-4.  Google Scholar

[5]

J. M. W. Brownjohn, Observations on non-linear dynamic characteristics of suspension bridges,, \emph{Earthquake Engineering and Structural Dynamics}, 23 (1994), 1351.   Google Scholar

[6]

F. Gazzola, Nonlinearity in oscillating bridges,, \emph{Electron. J. Diff. Equ.}, 211 (2013), 1.   Google Scholar

[7]

F. Gazzola and H.-Ch. Grunau, Radial entire solutions for supercritical biharmonic equations,, \emph{Math. Ann.}, 334 (2006), 905.  doi: 10.1007/s00208-005-0748-x.  Google Scholar

[8]

F. Gazzola and R. Pavani, Blow up oscillating solutions to some nonlinear fourth order differential equations,, \emph{Nonlinear Analysis}, 74 (2011), 6696.  doi: 10.1016/j.na.2011.06.049.  Google Scholar

[9]

F. Gazzola and R. Pavani, Blow-up oscillating solutions to some nonlinear fourth order differential equations describing oscillations of suspension bridges,, IABMAS12, (2012), 3089.  doi: 10.1016/j.na.2011.06.049.  Google Scholar

[10]

F. Gazzola and R. Pavani, Wide oscillations finite time blow up for solutions to nonlinear fourth order differential equations,, \emph{Arch. Rat. Mech. Anal.}, 207 (2013), 717.  doi: 10.1007/s00205-012-0569-5.  Google Scholar

[11]

G. W. Hunt, H. M. Bolt and J. M. T. Thompson, Localisation and the dynamical phase-space analogy,, \emph{Proc. Roy. Soc. London A}, 425 (1989), 245.   Google Scholar

[12]

I. V. Ivanov, D. S. Velchev, M. Kneć and T. Sadowski, Computational models of laminated glass plate under transverse static loading,, In \emph{Shell-like Structures, ().   Google Scholar

[13]

P. Karageorgis and P. J. McKenna, The existence of ground states for fourth-order wave equations,, \emph{Nonlinear Analysis}, 73 (2010), 367.  doi: 10.1016/j.na.2010.03.025.  Google Scholar

[14]

W. Lacarbonara, Nonlinear Structural Mechanics,, Springer, (2013).  doi: 10.1007/978-1-4419-1276-3.  Google Scholar

[15]

L. A. Peletier and W. C. Troy, Spatial Patterns. Higher Order Models in Physics and Mechanics,, Progress in Nonlinear Differential Equations and their Applications \textbf{45}, 45 (2001).  doi: 10.1007/978-1-4612-0135-9.  Google Scholar

[16]

M. A. Peletier, Sequential buckling: a variational analysis,, \emph{SIAM J. Math. Anal.}, 32 (2001), 1142.  doi: 10.1137/S0036141099359925.  Google Scholar

[17]

R. H. Plaut and F. M. Davis, Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges,, \emph{J. Sound and Vibration}, 307 (2007), 894.   Google Scholar

[1]

Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170

[2]

Gabriele Bonanno, Beatrice Di Bella. Fourth-order hemivariational inequalities. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 729-739. doi: 10.3934/dcdss.2012.5.729

[3]

Mikhaël Balabane, Mustapha Jazar, Philippe Souplet. Oscillatory blow-up in nonlinear second order ODE's: The critical case. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 577-584. doi: 10.3934/dcds.2003.9.577

[4]

P. J. McKenna. Oscillations in suspension bridges, vertical and torsional. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 785-791. doi: 10.3934/dcdss.2014.7.785

[5]

Alan E. Lindsay. An asymptotic study of blow up multiplicity in fourth order parabolic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 189-215. doi: 10.3934/dcdsb.2014.19.189

[6]

Jaime Angulo Pava, Carlos Banquet, Márcia Scialom. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 851-871. doi: 10.3934/dcds.2011.30.851

[7]

José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1

[8]

Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227

[9]

Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225

[10]

Feliz Minhós, João Fialho. On the solvability of some fourth-order equations with functional boundary conditions. Conference Publications, 2009, 2009 (Special) : 564-573. doi: 10.3934/proc.2009.2009.564

[11]

Haitao Che, Haibin Chen, Yiju Wang. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. Journal of Industrial & Management Optimization, 2020, 16 (1) : 309-324. doi: 10.3934/jimo.2018153

[12]

Elvise Berchio, Filippo Gazzola. The role of aerodynamic forces in a mathematical model for suspension bridges. Conference Publications, 2015, 2015 (special) : 112-121. doi: 10.3934/proc.2015.0112

[13]

Alberto Ferrero, Filippo Gazzola. A partially hinged rectangular plate as a model for suspension bridges. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5879-5908. doi: 10.3934/dcds.2015.35.5879

[14]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[15]

Zhilin Yang, Jingxian Sun. Positive solutions of a fourth-order boundary value problem involving derivatives of all orders. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1615-1628. doi: 10.3934/cpaa.2012.11.1615

[16]

Maria-Magdalena Boureanu. Fourth-order problems with Leray-Lions type operators in variable exponent spaces. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 231-243. doi: 10.3934/dcdss.2019016

[17]

Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275

[18]

Luca Calatroni, Bertram Düring, Carola-Bibiane Schönlieb. ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 931-957. doi: 10.3934/dcds.2014.34.931

[19]

Lili Ju, Xinfeng Liu, Wei Leng. Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1667-1687. doi: 10.3934/dcdsb.2014.19.1667

[20]

Amine Laghrib, Abdelkrim Chakib, Aissam Hadri, Abdelilah Hakim. A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 415-442. doi: 10.3934/dcdsb.2019188

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]