\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Instability of multi-spot patterns in shadow systems of reaction-diffusion equations

Abstract Related Papers Cited by
  • Our aim in this paper is to prove the instability of multi-spot patterns in a shadow system, which is obtained as a limiting system of a reaction-diffusion model as one of the diffusion coefficients goes to infinity. Instead of investigating each eigenfunction for a linearized operator, we characterize the eigenspace spanned by unstable eigenfunctions.
    Mathematics Subject Classification: Primary: 35B36, 35K57; Secondary: 37L15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.doi: 10.1007/BF00250555.

    [2]

    H. Berestycki, P.-L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in $R^N$, Indiana Univ. Math. J., 30 (1981), 141-157.

    [3]

    X. Chen and M. Kowalczyk, Slow dynamics of interior spikes in the shadow Gierer-Meinhardt system, Adv. Differential Equations, 6 (2001), 847-872.doi: 10.1137/S0036141099364954.

    [4]

    A. Doelman, R. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations, Indiana Univ. Math. J., 50 (2001), 443-507.

    [5]

    S.-I. Ei, K. Ikeda and Y. Miyamoto, Dynamics of a boundary spike for the shadow Gierer-Meinhardt system, Commun. Pure Appl. Anal., 11 (2012), 115-145.

    [6]

    L. C. Evans, Partial Differential Equations, vol.19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1998.

    [7]

    C. Gui, Multipeak solutions for a semilinear Neumann problem, Duke Math. J., 84 (1996), 739-769.doi: 10.1215/S0012-7094-96-08423-9.

    [8]

    K. Ikeda, The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system, Netw. Heterog. Media, 8 (2013), 291-325.doi: 10.3934/nhm.2013.8.291.

    [9]

    T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition.

    [10]

    K. Kurata and K. Morimoto, Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation, Commun. Pure Appl. Anal., 7 (2008), 1443-1482.doi: 10.3934/cpaa.2008.7.1443.

    [11]

    C. S. Lin and W.-M. Ni, On the diffusion coefficient of a semilinear Neumann problem, in Calculus of variations and partial differential equations (Trento, 1986), vol.1340 of Lecture Notes in Math., Springer, Berlin, (1988), 160-174.doi: 10.1007/BFb0082894.

    [12]

    Y. Miyamoto, An instability criterion for activator-inhibitor systems in a two-dimensional ball, J. Differential Equations, 229 (2006), 494-508.doi: 10.1016/j.jde.2006.03.015.

    [13]

    W.-M. Ni, P. PolJáčik and E. Yanagida, Monotonicity of stable solutions in shadow systems, Trans. Amer. Math. Soc., 353 (2001), 5057-5069 (electronic).

    [14]

    W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.doi: 10.1215/S0012-7094-93-07004-4.

    [15]

    Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593.doi: 10.1137/0513037.

    [16]

    I. Takagi, Point-condensation for a reaction-diffusion system, J. Differential Equations, 61 (1986), 208-249.doi: 10.1016/0022-0396(86)90119-1.

    [17]

    T. Wakasa and S. Yotsutani, Representation formulas for some 1-dimensional linearized eigenvalue problems, Commun. Pure Appl. Anal., 7 (2008), 745-763.doi: 10.3934/cpaa.2008.7.745.

    [18]

    J. Wei, Existence, stability and metastability of point condensation patterns generated by the Gray-Scott system, Nonlinearity, 12 (1999), 593-616.doi: 10.1088/0951-7715/12/3/011.

    [19]

    J. Wei and M. Winter, Existence and stability of multiple-spot solutions for the Gray-Scott model in $R^2$, Phys. D, 176 (2003), 147-180.doi: 10.1016/S0167-2789(02)00743-1.

    [20]

    J. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math. Pures Appl., 83 (2004), 433-476.doi: 10.1016/j.matpur.2003.09.006.

    [21]

    J. Wei and M. Winter, Existence, classification and stability analysis of multiple-peaked solutions for the Gierer-Meinhardt system in $R^1$, Methods Appl. Anal., 14 (2007), 119-163.doi: 10.4310/MAA.2007.v14.n2.a2.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(103) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return