• Previous Article
    Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities
  • CPAA Home
  • This Issue
  • Next Article
May  2015, 14(3): 743-757. doi: 10.3934/cpaa.2015.14.743

General types of spherical mean operators and $K$-functionals of fractional orders

1. 

Departamento de Matemática, Universidade de São Paulo (ICMC - USP), São Carlos, SP 13560-970, Brazil

2. 

Department of Mathematics, Missouri State University, Springfield, MO 65804, United States

Received  March 2014 Revised  September 2014 Published  March 2015

We design a general type of spherical mean operators and employ them to approximate $L_p$ class functions. We show that optimal orders of approximation are achieved via appropriately defined K-functionals of fractional orders.
Citation: Thaís Jordão, Xingping Sun. General types of spherical mean operators and $K$-functionals of fractional orders. Communications on Pure & Applied Analysis, 2015, 14 (3) : 743-757. doi: 10.3934/cpaa.2015.14.743
References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, U.S. Government Printing Office, Washington, D.C., 1964.  Google Scholar

[2]

G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and Its Applications, No. 71. Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781107325937.  Google Scholar

[3]

W. N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York, 1964.  Google Scholar

[4]

E. Belinsky, F. Dai and Z. Ditzian, Multivariate approximating averages, J. Approx. Theory 125, 1 (2003), 85-105. doi: 10.1016/j.jat.2003.09.005.  Google Scholar

[5]

W. O. Bray, Growth and integrability of Fourier transforms on Euclidean spaces,, to appear in \emph{J. Fourier Analysis and Applications}, ().  doi: 10.1007/s00041-014-9354-1.  Google Scholar

[6]

W. O. Bray and M. A. Pinsky, Growth properties of Fourier transforms via moduli of continuity, J. Funct. Anal. 255, 9 (2008), 2265-2285. doi: 10.1016/j.jfa.2008.06.017.  Google Scholar

[7]

D. Chen, V. A. Menegatto and X. Sun, A necessary and sufficient condition for strictly positive definite functions on spheres, Proceedings of the American Mathematical Society 131, 9 (2003), 2733-2740. doi: 10.1090/S0002-9939-03-06730-3.  Google Scholar

[8]

F. Dai and Z. Ditzian, Combinations of multivariate averages, J. Approx. Theory 131, 2 (2004), 268-283. doi: 10.1016/j.jat.2004.10.003.  Google Scholar

[9]

Z. Ditzian, Fractional derivatives and best approximation, Acta Math. Hungar. 81, 4 (1998), 323-348. doi: 10.1023/A:1006554907440.  Google Scholar

[10]

Z. Ditzian, Smoothness of a function and the growth of its Fourier transform or its Fourier coefficients, J. Approx. Theory 162, 5 (2010), 980-986. doi: 10.1016/j.jat.2009.11.003.  Google Scholar

[11]

Z. Ditzian, Relating smoothness to expressions involving Fourier coefficient or to a Fourier transform, J. Approx. Theory 164, 10 (2012), 1369-1389. doi: 10.1016/j.jat.2012.05.004.  Google Scholar

[12]

R. E. Edwards, Fourier Series: A Modern Introduction, Vol. II, Holt, Rinehart and Winston, INC., New York, 1967.  Google Scholar

[13]

D. Gioev, Moduli of continuity and average decay of Fourier transforms: two sided estimates, in Integrable Systems and Random Matrices (Cont. Math. 458), Amer. Math. Soc., Providence, RI, (2008), 377-392. doi: 10.1090/conm/458/08948.  Google Scholar

[14]

D. Gorbachev and S. Tikhonov, Moduli of smoothness and growth properties of Fourier transforms: two sided estimates, J. Approx. Theory 164, 9 (2012), 1283-1312. doi: 10.1016/j.jat.2012.05.017.  Google Scholar

[15]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6nd edition, translated from the Russian sixth edition, translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, Academic Press, Inc., San Diego, CA, 2000.  Google Scholar

[16]

F. J. Narcowich, X. Sun and J. D. Ward, Approximation power of RBFs and their associated SBFs: a connection, Adv. Comput. Math. 27, 1 (2007), 107-124. doi: 10.1007/s10444-005-7506-1.  Google Scholar

[17]

I. J. Schoenberg, Metric spaces and completely monotone functions, The Annals of Mathematics 39, 4 (1938), 811-841. doi: 10.2307/1968466.  Google Scholar

[18]

I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J., 9 (1988), 96-108.  Google Scholar

[19]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[20]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.  Google Scholar

[21]

E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32. Princeton University Press, Princeton, N.J., 1971.  Google Scholar

[22]

E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 3nd edition, Chelsea Publishing Co., New York, 1986.  Google Scholar

[23]

C. Wolf, A mathematical model for the propagation of a hantavirus in structured populations, Discrete Continuous Dynam. Systems - B, 4 (2004), 1065-1089. doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, U.S. Government Printing Office, Washington, D.C., 1964.  Google Scholar

[2]

G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and Its Applications, No. 71. Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781107325937.  Google Scholar

[3]

W. N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York, 1964.  Google Scholar

[4]

E. Belinsky, F. Dai and Z. Ditzian, Multivariate approximating averages, J. Approx. Theory 125, 1 (2003), 85-105. doi: 10.1016/j.jat.2003.09.005.  Google Scholar

[5]

W. O. Bray, Growth and integrability of Fourier transforms on Euclidean spaces,, to appear in \emph{J. Fourier Analysis and Applications}, ().  doi: 10.1007/s00041-014-9354-1.  Google Scholar

[6]

W. O. Bray and M. A. Pinsky, Growth properties of Fourier transforms via moduli of continuity, J. Funct. Anal. 255, 9 (2008), 2265-2285. doi: 10.1016/j.jfa.2008.06.017.  Google Scholar

[7]

D. Chen, V. A. Menegatto and X. Sun, A necessary and sufficient condition for strictly positive definite functions on spheres, Proceedings of the American Mathematical Society 131, 9 (2003), 2733-2740. doi: 10.1090/S0002-9939-03-06730-3.  Google Scholar

[8]

F. Dai and Z. Ditzian, Combinations of multivariate averages, J. Approx. Theory 131, 2 (2004), 268-283. doi: 10.1016/j.jat.2004.10.003.  Google Scholar

[9]

Z. Ditzian, Fractional derivatives and best approximation, Acta Math. Hungar. 81, 4 (1998), 323-348. doi: 10.1023/A:1006554907440.  Google Scholar

[10]

Z. Ditzian, Smoothness of a function and the growth of its Fourier transform or its Fourier coefficients, J. Approx. Theory 162, 5 (2010), 980-986. doi: 10.1016/j.jat.2009.11.003.  Google Scholar

[11]

Z. Ditzian, Relating smoothness to expressions involving Fourier coefficient or to a Fourier transform, J. Approx. Theory 164, 10 (2012), 1369-1389. doi: 10.1016/j.jat.2012.05.004.  Google Scholar

[12]

R. E. Edwards, Fourier Series: A Modern Introduction, Vol. II, Holt, Rinehart and Winston, INC., New York, 1967.  Google Scholar

[13]

D. Gioev, Moduli of continuity and average decay of Fourier transforms: two sided estimates, in Integrable Systems and Random Matrices (Cont. Math. 458), Amer. Math. Soc., Providence, RI, (2008), 377-392. doi: 10.1090/conm/458/08948.  Google Scholar

[14]

D. Gorbachev and S. Tikhonov, Moduli of smoothness and growth properties of Fourier transforms: two sided estimates, J. Approx. Theory 164, 9 (2012), 1283-1312. doi: 10.1016/j.jat.2012.05.017.  Google Scholar

[15]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6nd edition, translated from the Russian sixth edition, translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, Academic Press, Inc., San Diego, CA, 2000.  Google Scholar

[16]

F. J. Narcowich, X. Sun and J. D. Ward, Approximation power of RBFs and their associated SBFs: a connection, Adv. Comput. Math. 27, 1 (2007), 107-124. doi: 10.1007/s10444-005-7506-1.  Google Scholar

[17]

I. J. Schoenberg, Metric spaces and completely monotone functions, The Annals of Mathematics 39, 4 (1938), 811-841. doi: 10.2307/1968466.  Google Scholar

[18]

I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J., 9 (1988), 96-108.  Google Scholar

[19]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[20]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.  Google Scholar

[21]

E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32. Princeton University Press, Princeton, N.J., 1971.  Google Scholar

[22]

E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 3nd edition, Chelsea Publishing Co., New York, 1986.  Google Scholar

[23]

C. Wolf, A mathematical model for the propagation of a hantavirus in structured populations, Discrete Continuous Dynam. Systems - B, 4 (2004), 1065-1089. doi: 10.3934/dcdsb.2004.4.1065.  Google Scholar

[1]

Chenchen Wu, Wei Lv, Yujie Wang, Dachuan Xu. Approximation algorithm for spherical $ k $-means problem with penalty. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021067

[2]

Sung Ha Kang, Berta Sandberg, Andy M. Yip. A regularized k-means and multiphase scale segmentation. Inverse Problems & Imaging, 2011, 5 (2) : 407-429. doi: 10.3934/ipi.2011.5.407

[3]

Baolan Yuan, Wanjun Zhang, Yubo Yuan. A Max-Min clustering method for $k$-means algorithm of data clustering. Journal of Industrial & Management Optimization, 2012, 8 (3) : 565-575. doi: 10.3934/jimo.2012.8.565

[4]

Min Li, Yishui Wang, Dachuan Xu, Dongmei Zhang. The approximation algorithm based on seeding method for functional $ k $-means problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020160

[5]

Baoli Shi, Zhi-Feng Pang, Jing Xu. Image segmentation based on the hybrid total variation model and the K-means clustering strategy. Inverse Problems & Imaging, 2016, 10 (3) : 807-828. doi: 10.3934/ipi.2016022

[6]

Fan Yuan, Dachuan Xu, Donglei Du, Min Li. An exact algorithm for stable instances of the $ k $-means problem with penalties in fixed-dimensional Euclidean space. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021122

[7]

Xavier Ros-Oton, Joaquim Serra. Local integration by parts and Pohozaev identities for higher order fractional Laplacians. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 2131-2150. doi: 10.3934/dcds.2015.35.2131

[8]

Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036

[9]

Marius Tucsnak. Control of plate vibrations by means of piezoelectric actuators. Discrete & Continuous Dynamical Systems, 1996, 2 (2) : 281-293. doi: 10.3934/dcds.1996.2.281

[10]

Gilles Carbou, Stéphane Labbé, Emmanuel Trélat. Smooth control of nanowires by means of a magnetic field. Communications on Pure & Applied Analysis, 2009, 8 (3) : 871-879. doi: 10.3934/cpaa.2009.8.871

[11]

Guojun Gan, Qiujun Lan, Shiyang Sima. Scalable clustering by truncated fuzzy $c$-means. Big Data & Information Analytics, 2016, 1 (2&3) : 247-259. doi: 10.3934/bdia.2016007

[12]

Liran Rotem. Banach limit in convexity and geometric means for convex bodies. Electronic Research Announcements, 2016, 23: 41-51. doi: 10.3934/era.2016.23.005

[13]

Xiaoxi Li, Marc Quincampoix, Jérôme Renault. Limit value for optimal control with general means. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 2113-2132. doi: 10.3934/dcds.2016.36.2113

[14]

Maha Daoud, El Haj Laamri. Fractional Laplacians : A short survey. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021027

[15]

Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037

[16]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5495-5508. doi: 10.3934/dcdsb.2020355

[17]

Giovanni Covi, Keijo Mönkkönen, Jesse Railo. Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. Inverse Problems & Imaging, 2021, 15 (4) : 641-681. doi: 10.3934/ipi.2021009

[18]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[19]

Primitivo B. Acosta-Humánez, J. Tomás Lázaro, Juan J. Morales-Ruiz, Chara Pantazi. On the integrability of polynomial vector fields in the plane by means of Picard-Vessiot theory. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1767-1800. doi: 10.3934/dcds.2015.35.1767

[20]

Aleksandra Čižmešija, Iva Franjić, Josip Pečarić, Dora Pokaz. On a family of means generated by the Hardy-Littlewood maximal inequality. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 223-231. doi: 10.3934/naco.2012.2.223

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]