• Previous Article
    Uniform stability of the Boltzmann equation with an external force near vacuum
  • CPAA Home
  • This Issue
  • Next Article
    Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities
May  2015, 14(3): 793-809. doi: 10.3934/cpaa.2015.14.793

Differential Harnack estimates for backward heat equations with potentials under geometric flows

1. 

School of Mathematical Science, Yangzhou University, Yangzhou 225002, China

2. 

School of Mathematics and physics, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China

Received  January 2014 Revised  December 2014 Published  March 2015

In the paper we consider a closed Riemannian manifold $M$ with a time-dependent Riemannian metric $g_{i j}(t)$ evolving by $\partial_{t}g_{i j}=-2S_{i j}$ where $S_{i j}$ is a symmetric two-tensor on $(M,g(t))$. We prove some differential Harnack inequalities for positive solutions of backward heat equations with potentials when the metric satisfies the geometric flow. Some applications of these inequalities will be obtained. In particular, we show that the shrinking breathers of the Lorentzian mean curvature flow are the shrinking gradient solitons when the ambient Lorentzian manifold has nonnegative sectional curvature.
Citation: Shouwen Fang, Peng Zhu. Differential Harnack estimates for backward heat equations with potentials under geometric flows. Communications on Pure and Applied Analysis, 2015, 14 (3) : 793-809. doi: 10.3934/cpaa.2015.14.793
References:
[1]

B. Andrews, Harnack inequalities for evolving hypersurfaces, Math. Z., 217 (1994), 179-197. doi: 10.1007/BF02571941.

[2]

S. Brendle, A generalization of Hamilton's differential Harnack inequality for the Ricci flow, J. Diff. Geom., 82 (2009), 207-227.

[3]

H. D. Cao, On Harnack's inequalities for the Kähler-Ricci flow, Invent. Math., 109 (1992), 247-263. doi: 10.1007/BF01232027.

[4]

H. D. Cao and L. Ni, Matrix Li-Yau-Hamilton estimates for the heat equation on Kähler manifolds, Math. Ann., 331 (2005), 795-807. doi: 10.1007/s00208-004-0605-3.

[5]

X. D. Cao, Differential Harnack estimates for backward heat equations with potentials under the Ricci flow, J. Funct. Anal., 255 (2008), 1024-1038. doi: 10.1016/j.jfa.2008.05.009.

[6]

X. D. Cao and R. Hamilton, Differential Harnack estimates for time-dependent heat equations with potentials, Geom. Funct. Anal., 19 (2009), 989-1000. doi: 10.1007/s00039-009-0024-4.

[7]

B. Chow, On Harnack's inequality and entropy for the Gaussian curvature flow, Comm. Pure Appl. Math., 44 (1991), 469-483. doi: 10.1002/cpa.3160440405.

[8]

B. Chow, The Ricci flow on the 2-sphere, J. Diff. Geom., 33 (1991), 325-334.

[9]

B. Chow, The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature, Comm. Pure Appl. Math., 45 (1992), 1003-1014. doi: 10.1002/cpa.3160450805.

[10]

B. Chow and S. C. Chu, A geometric interpretation of Hamilton's Harnack inequality for the Ricci flow, Math. Res. Lett., 2 (1995), 701-718. doi: 10.4310/MRL.1995.v2.n6.a4.

[11]

B. Chow and S. C. Chu, Space-time formulation of Harnack inequalities for curvature flows of hypersurfaces, J. Geom. Anal., 11 (2001), 219-231. doi: 10.1007/BF02921963.

[12]

B. Chow and R. Hamilton, Constrained and linear Harnack inequalities for parabolic equations, Invent. Math., 129 (1997), 213-238. doi: 10.1007/s002220050162.

[13]

K. Ecker, A formula relating entropy monotonicity to Harnack inequalities, Comm. Anal. Geom., 15 (2007), 1025-1061. doi: 10.4310/CAG.2007.v15.n5.a5.

[14]

S. W. Fang, Local Harnack estimate for Yamabe flow on locally conformally flat manifolds, Asian J. Math., 12 (2008), 545-552. doi: 10.4310/AJM.2008.v12.n4.a8.

[15]

S. W. Fang, Harnack estimates for curvature flows depending on mean curvature, Appl. Math. J. Chinese Univ. B, 24 (2009), 361-369. doi: 10.1007/s11766-009-2019-1.

[16]

S. W. Fang and F. Ye, Differential Harnack inequalities for heat equations with potentials under Kähler-Ricci flow, Acta Math. Sincia (Chinese Series), 53 (2010), 597-606.

[17]

S. W. Fang, Differential Harnack inequalities for heat equations with potentials under the Bernhard List's flow, Geom. Dedicata, 161 (2012), 11-22. doi: 10.1007/s10711-011-9690-0.

[18]

S. W. Fang, Differential Harnack inequalities for backward heat equations with potentials under an extended Ricci flow, Adv. Geom., 13 (2013), 741-755. doi: 10.1515/advgeom-2013-0020.

[19]

S. W. Fang, Differential Harnack inequalities for heat equations with potentials under geometric flows, Arch. Math., 100 (2013), 179-189. doi: 10.1007/s00013-013-0482-7.

[20]

C. M. Guenther, The fundamental solution on manifolds with time-dependent metrics, J. Geom. Anal., 12 (2002), 425-436. doi: 10.1007/BF02922048.

[21]

R. Hamilton, The Ricci flow on surfaces, in Mathematics and General Relativity (ed. James A. Isenberg), Contemp. Math. 71, Amer. Math. Soc., Providence, RI, (1988), 237-262. doi: 10.1090/conm/071/954419.

[22]

R. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom., 1 (1993), 113-126.

[23]

R. Hamilton, The Harnack estimate for the Ricci flow, J. Diff. Geom., 37 (1993), 225-243.

[24]

R. Hamilton, The Harnack estimate for the mean curvature flow, J. Diff. Geom., 41 (1995), 215-226.

[25]

S. L. Kuang and Q. S. Zhang, A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow, J. Funct. Anal., 255 (2008), 1008-1023. doi: 10.1016/j.jfa.2008.05.014.

[26]

P. Li and S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta. Math., 156 (1986), 153-201. doi: 10.1007/BF02399203.

[27]

R. Müller, Monotone volume formulas for geometric flows, J. Reine Angew. Math., 643 (2010), 39-57. doi: 10.1515/CRELLE.2010.044.

[28]

L. Ni, A matrix Li-Yau-Hamilton estimate for Kähler-Ricci flow, J. Diff. Geom., 75 (2007), 303-358.

[29]

G. Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint, arXiv:math/0211159.

[30]

O. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators, J. Funct. Anal., 42 (1981), 110-120. doi: 10.1016/0022-1236(81)90050-1.

[31]

K. Smoczyk, Harnack inequalities for curvature flows depending on mean curvature, New York J. Math, 3 (1997), 103-118.

[32]

K. Smoczyk, Harnack inequality for the Lagrangian mean curvature flow, Calc. Var. Partial Differ. Equ., 8 (1999), 247-258. doi: 10.1007/s005260050125.

[33]

J. Wang, Harnack estimate for $H^k$-flow, Science in China Series A: Mathematics, 50 (2007), 1642-1650. doi: 10.1007/s11425-007-0095-3.

[34]

J. Wang, Local Harnack estimate for mean curvature flow in Euclidean space, Asian J. Math., 13 (2009), 89-100. doi: 10.4310/AJM.2009.v13.n1.a5.

[35]

A. Q. Zhu, Differential Harnack inequalities for the backward heat equation with potential under the harmonic-Ricci flow, J. Math. Anal. Appl., 406 (2013), 502-510. doi: 10.1016/j.jmaa.2013.05.004.

show all references

References:
[1]

B. Andrews, Harnack inequalities for evolving hypersurfaces, Math. Z., 217 (1994), 179-197. doi: 10.1007/BF02571941.

[2]

S. Brendle, A generalization of Hamilton's differential Harnack inequality for the Ricci flow, J. Diff. Geom., 82 (2009), 207-227.

[3]

H. D. Cao, On Harnack's inequalities for the Kähler-Ricci flow, Invent. Math., 109 (1992), 247-263. doi: 10.1007/BF01232027.

[4]

H. D. Cao and L. Ni, Matrix Li-Yau-Hamilton estimates for the heat equation on Kähler manifolds, Math. Ann., 331 (2005), 795-807. doi: 10.1007/s00208-004-0605-3.

[5]

X. D. Cao, Differential Harnack estimates for backward heat equations with potentials under the Ricci flow, J. Funct. Anal., 255 (2008), 1024-1038. doi: 10.1016/j.jfa.2008.05.009.

[6]

X. D. Cao and R. Hamilton, Differential Harnack estimates for time-dependent heat equations with potentials, Geom. Funct. Anal., 19 (2009), 989-1000. doi: 10.1007/s00039-009-0024-4.

[7]

B. Chow, On Harnack's inequality and entropy for the Gaussian curvature flow, Comm. Pure Appl. Math., 44 (1991), 469-483. doi: 10.1002/cpa.3160440405.

[8]

B. Chow, The Ricci flow on the 2-sphere, J. Diff. Geom., 33 (1991), 325-334.

[9]

B. Chow, The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature, Comm. Pure Appl. Math., 45 (1992), 1003-1014. doi: 10.1002/cpa.3160450805.

[10]

B. Chow and S. C. Chu, A geometric interpretation of Hamilton's Harnack inequality for the Ricci flow, Math. Res. Lett., 2 (1995), 701-718. doi: 10.4310/MRL.1995.v2.n6.a4.

[11]

B. Chow and S. C. Chu, Space-time formulation of Harnack inequalities for curvature flows of hypersurfaces, J. Geom. Anal., 11 (2001), 219-231. doi: 10.1007/BF02921963.

[12]

B. Chow and R. Hamilton, Constrained and linear Harnack inequalities for parabolic equations, Invent. Math., 129 (1997), 213-238. doi: 10.1007/s002220050162.

[13]

K. Ecker, A formula relating entropy monotonicity to Harnack inequalities, Comm. Anal. Geom., 15 (2007), 1025-1061. doi: 10.4310/CAG.2007.v15.n5.a5.

[14]

S. W. Fang, Local Harnack estimate for Yamabe flow on locally conformally flat manifolds, Asian J. Math., 12 (2008), 545-552. doi: 10.4310/AJM.2008.v12.n4.a8.

[15]

S. W. Fang, Harnack estimates for curvature flows depending on mean curvature, Appl. Math. J. Chinese Univ. B, 24 (2009), 361-369. doi: 10.1007/s11766-009-2019-1.

[16]

S. W. Fang and F. Ye, Differential Harnack inequalities for heat equations with potentials under Kähler-Ricci flow, Acta Math. Sincia (Chinese Series), 53 (2010), 597-606.

[17]

S. W. Fang, Differential Harnack inequalities for heat equations with potentials under the Bernhard List's flow, Geom. Dedicata, 161 (2012), 11-22. doi: 10.1007/s10711-011-9690-0.

[18]

S. W. Fang, Differential Harnack inequalities for backward heat equations with potentials under an extended Ricci flow, Adv. Geom., 13 (2013), 741-755. doi: 10.1515/advgeom-2013-0020.

[19]

S. W. Fang, Differential Harnack inequalities for heat equations with potentials under geometric flows, Arch. Math., 100 (2013), 179-189. doi: 10.1007/s00013-013-0482-7.

[20]

C. M. Guenther, The fundamental solution on manifolds with time-dependent metrics, J. Geom. Anal., 12 (2002), 425-436. doi: 10.1007/BF02922048.

[21]

R. Hamilton, The Ricci flow on surfaces, in Mathematics and General Relativity (ed. James A. Isenberg), Contemp. Math. 71, Amer. Math. Soc., Providence, RI, (1988), 237-262. doi: 10.1090/conm/071/954419.

[22]

R. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom., 1 (1993), 113-126.

[23]

R. Hamilton, The Harnack estimate for the Ricci flow, J. Diff. Geom., 37 (1993), 225-243.

[24]

R. Hamilton, The Harnack estimate for the mean curvature flow, J. Diff. Geom., 41 (1995), 215-226.

[25]

S. L. Kuang and Q. S. Zhang, A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow, J. Funct. Anal., 255 (2008), 1008-1023. doi: 10.1016/j.jfa.2008.05.014.

[26]

P. Li and S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta. Math., 156 (1986), 153-201. doi: 10.1007/BF02399203.

[27]

R. Müller, Monotone volume formulas for geometric flows, J. Reine Angew. Math., 643 (2010), 39-57. doi: 10.1515/CRELLE.2010.044.

[28]

L. Ni, A matrix Li-Yau-Hamilton estimate for Kähler-Ricci flow, J. Diff. Geom., 75 (2007), 303-358.

[29]

G. Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint, arXiv:math/0211159.

[30]

O. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators, J. Funct. Anal., 42 (1981), 110-120. doi: 10.1016/0022-1236(81)90050-1.

[31]

K. Smoczyk, Harnack inequalities for curvature flows depending on mean curvature, New York J. Math, 3 (1997), 103-118.

[32]

K. Smoczyk, Harnack inequality for the Lagrangian mean curvature flow, Calc. Var. Partial Differ. Equ., 8 (1999), 247-258. doi: 10.1007/s005260050125.

[33]

J. Wang, Harnack estimate for $H^k$-flow, Science in China Series A: Mathematics, 50 (2007), 1642-1650. doi: 10.1007/s11425-007-0095-3.

[34]

J. Wang, Local Harnack estimate for mean curvature flow in Euclidean space, Asian J. Math., 13 (2009), 89-100. doi: 10.4310/AJM.2009.v13.n1.a5.

[35]

A. Q. Zhu, Differential Harnack inequalities for the backward heat equation with potential under the harmonic-Ricci flow, J. Math. Anal. Appl., 406 (2013), 502-510. doi: 10.1016/j.jmaa.2013.05.004.

[1]

Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093

[2]

Fen-Fen Yang. Harnack inequality and gradient estimate for functional G-SDEs with degenerate noise. Probability, Uncertainty and Quantitative Risk, 2022, 7 (2) : 119-132. doi: 10.3934/puqr.2022008

[3]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations and Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[4]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control and Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[5]

Michael Renardy. Backward uniqueness for linearized compressible flow. Evolution Equations and Control Theory, 2015, 4 (1) : 107-113. doi: 10.3934/eect.2015.4.107

[6]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[7]

Sylvain Ervedoza, Enrique Zuazua. Observability of heat processes by transmutation without geometric restrictions. Mathematical Control and Related Fields, 2011, 1 (2) : 177-187. doi: 10.3934/mcrf.2011.1.177

[8]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems and Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[9]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[10]

Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

[11]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[12]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control and Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[13]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[14]

Neal Bez, Chris Jeavons. A sharp Sobolev-Strichartz estimate for the wave equation. Electronic Research Announcements, 2015, 22: 46-54. doi: 10.3934/era.2015.22.46

[15]

Y. Chen, S. Levine. The existence of the heat flow of H-systems. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 219-236. doi: 10.3934/dcds.2002.8.219

[16]

Andrey Shishkov, Laurent Véron. Propagation of singularities of nonlinear heat flow in fissured media. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1769-1782. doi: 10.3934/cpaa.2013.12.1769

[17]

Alberto Bressan, Khai T. Nguyen. Optima and equilibria for traffic flow on networks with backward propagating queues. Networks and Heterogeneous Media, 2015, 10 (4) : 717-748. doi: 10.3934/nhm.2015.10.717

[18]

Alberto Zingaro, Ivan Fumagalli, Luca Dede, Marco Fedele, Pasquale C. Africa, Antonio F. Corno, Alfio Quarteroni. A geometric multiscale model for the numerical simulation of blood flow in the human left heart. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2391-2427. doi: 10.3934/dcdss.2022052

[19]

C. Brändle, E. Chasseigne, Raúl Ferreira. Unbounded solutions of the nonlocal heat equation. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1663-1686. doi: 10.3934/cpaa.2011.10.1663

[20]

Arthur Ramiandrisoa. Nonlinear heat equation: the radial case. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 849-870. doi: 10.3934/dcds.1999.5.849

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (101)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]