\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniform stability of the Boltzmann equation with an external force near vacuum

Abstract Related Papers Cited by
  • The temporal uniform $L^1(x,v)$ stability of mild solutions for the Boltzmann equation with an external force is considered. We give a unified proof of the stability for two kinds of the forces. Firstly, we extend the soft potential case in [9] to both soft and hard cases. Secondly, we weaken the condition on the force in [13]. Furthermore, we give some new examples satisfying the constructive conditions on the force in [11].
    Mathematics Subject Classification: Primary: 35Q20; Secondary: 82C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. J. Alonso, Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data, Indiana Univ. Math. J., 58 (2009), 999-1022.doi: 10.1512/iumj.2009.58.3506.

    [2]

    L. Arkeryd, Stability in $L^1$ for the spatially homogeneous Boltzmann equation, Arch. Rational Mech. Anal., 103 (1988), 151-168.doi: 10.1007/BF00251506.

    [3]

    N. Bellomo, A. Palczewski and G. Toscani, Mathematical Topics in Nonlinear Kinetic Theory, World Scientific, Singapore, 1988.

    [4]

    N. Bellomo and G. Toscani, On the Cauchy problem for the nonlinear Boltzmann equation: Global existence, uniqueness and asymptotic behavior, J. Math. Phys., 26 (1985), 334-338.doi: 10.1063/1.526664.

    [5]

    N. Bellomo, M. Lachowicz, A. Palczewski and G. Toscani, On the initial value problem for the Boltzmann equation with a force term, Transport Theory Statist. Phys., 18 (1989), 87-102.doi: 10.1080/00411458908214500.

    [6]

    C. Cercignani, The Boltzmann Equation and Its Applications, Springer, New York, 1988.doi: 10.1007/978-1-4612-1039-9.

    [7]

    C. Cercignani, R. Illner and C. Stoica, On diffusive equilibria in generalized kinetic theory, J. Statist. Phys., 105 (2001), 337-352.doi: 10.1023/A:1012246513712.

    [8]

    M. Chae and S. Y. Ha, Stability estimates of the Boltzmann equation with quantum effects, Contin. Mech. Thermodyn., 17 (2006), 511-524.doi: 10.1007/s00161-006-0012-y.

    [9]

    C. H. Cheng, Uniform stability of solutions of Boltzmann equation for soft potential with external force, J. Math. Anal. Appl., 352 (2009), 724-732.doi: 10.1016/j.jmaa.2008.11.027.

    [10]

    Y. K. Cho and B. J. Yu, Uniform stability estimates for solutions and their gradients to the Boltzmann equation: A unified approach, J. Differ. Eqns., 245 (2008), 3615-3627.doi: 10.1016/j.jde.2008.03.005.

    [11]

    R. J. Duan, T. Yang and C. J. Zhu, Global existence to the Boltzmann equation with external force in infinite vacuum, J. Math. Phys., 46 (2005), 053307.doi: 10.1063/1.1899985.

    [12]

    R. J. Duan, T. Yang and C. J. Zhu, Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum, Discrete Contin. Dyn. Syst., 16 (2006), 253-277.doi: 10.3934/dcds.2006.16.253.

    [13]

    R. J. Duan, T. Yang and C. J. Zhu, $L^1$ and BV-type stability of the Boltzmann equation with external forces, J. Differ. Eqns., 227 (2006), 1-28.doi: 10.1016/j.jde.2006.01.010.

    [14]

    R. J. Duan, M. Zhang and C. J. Zhu, $L^1$ stability for the Vlasov-Poisson-Boltzmann system around vacuum, Math. Model Meth. Appl. Sci., 16 (2006), 1505-1526.doi: 10.1142/S0218202506001613.

    [15]

    R. Glassey, The Cauchy Problem in Kinetic Theory, SIAM 1996.doi: 10.1137/1.9781611971477.

    [16]

    R. Glassey, Global solutions to the Cauchy problem for the relativistic Boltzmann equation with near-vacuum data, Comm. Math. Phys., 26 (2006), 705-724.doi: 10.1007/s00220-006-1522-y.

    [17]

    Y. Guo, The Vlasov-Poisson-Boltzmann system near vacuum, Comm. Math. Phys., 218 (2001), 293-313.doi: 10.1007/s002200100391.

    [18]

    S. Y. Ha, $L^1$ stability of the Boltzmann equation for the hard sphere model, Arch. Rational Mech. Anal., 173 (2004), 25-42.doi: 10.1007/s00205-004-0321-x.

    [19]

    S. Y. Ha, Nonlinear functionals of the Boltzmann equation and uniform stability estimates, J. Differ. Eqns., 215 (2005), 178-205.doi: 10.1016/j.jde.2004.07.022.

    [20]

    K. Hamdache, Thèse de doctorat d'état de Paris VI, 1986.

    [21]

    K. Hamdache, Existence in the large and asymptotic behaviour for the Boltzmann equation, Japan. J. Appl. Math., 2 (1984), 1-15.doi: 10.1007/BF03167035.

    [22]

    R. Illner and M. Shinbrot, The Boltzmann equation, global existence for a rare gas in an infinite vacuum, Comm. Math. Phys., 95 (1984), 217-226.

    [23]

    S. Kaniel and M. Shinbrot, The Boltzmann equation: I. Uniqueness and local existence, Comm. Math. Phys., 58 (1978), 65-84.

    [24]

    X. G. Lu, Spatial decay solutions of the Boltzmann equation: converse properties of long time limiting behavior, SIAM J. Math. Anal., 30 (1999), 1151-1174.doi: 10.1137/S0036141098334985.

    [25]

    J. Polewczak, Classical solution of the nonlinear Boltzmann equation in all $R^3$: asymptotic behavior of solutions, J. Stat. Phys., 50 (1988), 611-632.doi: 10.1007/BF01026493.

    [26]

    M. Tabata and N. Eshima, Decay of solutions to the mixed problem for the linearized Boltzmann equation with a potential term in a polyhedral bounded domain, Rend. Sem. Mat. Univ. Padova, 103 (2000), 133-155.

    [27]

    G. Toscani, H-theorem and asymptotic trend of the solution for a rarefied gas in a vacuum, Arch. Rational Mech. Anal., 102 (1988), 231-241.doi: 10.1007/BF00281348.

    [28]

    Z. G. Wu, $L^1$ and BV-type stability of the inelastic Boltzmann equation near vacuum, Continuum Mech. Thermodyn., 22 (2010), 239-249.doi: 10.1007/s00161-009-0127-z.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(49) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return