-
Previous Article
Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves
- CPAA Home
- This Issue
-
Next Article
Uniform stability of the Boltzmann equation with an external force near vacuum
Standing wave concentrating on compact manifolds for nonlinear Schrödinger equations
1. | Department of Mathematical Sciences, KAIST, 335 Gwahangno, Yuseong-gu Daejeon, 305-701, South Korea |
2. | Center for Partial Differential Equations, East China Normal University, 500 Dongchuan Road, Shanghai, China |
3. | Department of Mathematics, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan |
References:
[1] |
A. Ambrosetti, A. Malchiodi and W.-M Ni, Singularly perturves elliptic equation with symmetry: existence of solutions concentrating on spheres. I,, \emph{Comm. Math. Phys.}, 235 (2003), 427.
doi: 10.1007/s00220-003-0811-y. |
[2] |
A. Ambrosetti, A. Malchiodi and D. Ruiz, Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity,, \emph{J. d'Anayse Math.}, 98 (2006), 317.
doi: 10.1007/BF02790279. |
[3] |
A. Ambrosetti, A. Malchiodi and A. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials,, \emph{Arch. Rational Mech. Anal.}, 159 (2001), 253.
doi: 10.1007/s002050100152. |
[4] |
A. Ambrosetti and D. Ruiz, Radial solutions concentrating on sphere of nonlinear Schrödinger equations with vanishing potentials,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 136 (2006), 889.
doi: 10.1017/S0308210500004789. |
[5] |
M. Badiale. and T. D'Aprile, Concentration around a sphere for a singulary perturbed Schrödinger equation,, \emph{Nonlinear Anal.}, 49 (2002), 947.
doi: 10.1016/S0362-546X(01)00717-9. |
[6] |
V. Benci. and T. D'Aprile, The semiclassical limit of the nonlinear Schrödinger equation in a radial potential,, \emph{J. Diff. Equat.}, 184 (2002), 109.
doi: 10.1006/jdeq.2001.4138. |
[7] |
J. Byeon, Standing Waves for nonlinear Schrödinger equations with a radial potential,, \emph{Nonlinear Anal.}, 50 (2002), 1135.
doi: 10.1016/S0362-546X(01)00805-7. |
[8] |
J. Byeon and Y. Oshita, Existence of multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations,, \emph{Comm. Partial Differential Equations}, 29 (2004), 1877.
doi: 10.1081/PDE-200040205. |
[9] |
J. Byeon and Y. Oshita, Uniqueness of a standing wave for nonlinear Schrödinger equations,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 138A (2008), 975.
doi: 10.1017/S0308210507000236. |
[10] |
J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations,, \emph{Arch. Rational Mech. Anal.}, 165 (2002), 295.
doi: 10.1007/s00205-002-0225-6. |
[11] |
J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations. II,, \emph{Calc. Var. Partial Differential Equations}, 18 (2003), 207.
doi: 10.1007/s00526-002-0191-8. |
[12] |
D. Cao, E. S. Noussair and S. Yan, Multiscale-bump standing waves with a critical frequency for nonlinear Schrödinger equations,, to appear in \emph{Trans. of AMS}., ().
doi: 10.1090/S0002-9947-08-04348-1. |
[13] |
D. Cao and S. Peng, Multi-bump bound states of Schrödinger equations with a critical frequency,, \emph{Math. Ann}, 336 (2006), 925.
doi: 10.1007/s00208-006-0021-y. |
[14] |
E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations,, \emph{J. Differential Equations}, 74 (1998), 120.
doi: 10.1016/0022-0396(88)90021-6. |
[15] |
E. N. Dancer and S. Yan, On the existence of multipeak solutions for nonlinear field equations on $R^N$,, \emph{Discrete Contin. Dynam. Systems, 6 (2000), 39.
|
[16] |
E. N. Dancer, K. Y. Lam and S. Yan, The effect of the graph topology on the existence of multipeak solutions for nonlinear Schrödinger equations,, \emph{Abstr. Apply. Anal.}, 3 (1998), 293.
doi: 10.1155/S1085337598000578. |
[17] |
M. del Pino and P. L. Felmer, Local mountaion passes for semilinear elliptic problems in unbounded domains,, \emph{Calc. Var. Partial Differential Equations}, 4 (1996), 121.
doi: 10.1007/BF01189950. |
[18] |
M. del Pino and P. L. Felmer, Semi-classical states for nonlinear Schrödinger equations,, \emph{J. Funct. Anal.}, 149 (1997), 245.
doi: 10.1006/jfan.1996.3085. |
[19] |
M. del Pino and P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations,, \emph{Ann. Inst. Henri Poincar\'e}, 15 (1998), 127.
doi: 10.1016/S0294-1449(97)89296-7. |
[20] |
M. del Pino and P. L. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method,, \emph{Math. Ann.}, 324 (2002), 1.
doi: 10.1007/s002080200327. |
[21] |
M. del Pino, P. L. Felmer and O. H. Miyagaki, Existence of positive bound states of nonlinear Schrödinger equations with saddle-like potential,, \emph{Nonlinear Anal. TMA, 34 (1998), 979.
doi: 10.1016/S0362-546X(97)00593-2. |
[22] |
M. del Pino, M. Kowalczyk and J.-C. Wei, Concentration on curves for nonlinear Schrödinger equations,, \emph{Comm. Pur. App. Math.}, LX (2007), 113.
doi: 10.1002/cpa.20135. |
[23] |
A. Floer and A. Weinstein, Non spreading wave packets for the cubic Schrödinger equations with a bounded potential,, \emph{J. Funct. Anal.}, 69 (1986), 397.
doi: 10.1016/0022-1236(86)90096-0. |
[24] |
B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, \emph{Comm. Math. Phys., 68 (1979), 209.
|
[25] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, 2nd ed., (1983).
doi: 10.1007/978-3-642-61798-0. |
[26] |
C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method,, \emph{Comm. Partial Differential Equations}, 21 (1996), 787.
doi: 10.1080/03605309608821208. |
[27] |
Y. Kabeya and K. Tanaka, Uniqueness of positive solutions of semilinear elliptic equations in $R^N$ and Séré's non-degeneracy condition,, \emph{Comm. Partial Differential Equations, 24 (1999), 563.
doi: 10.1080/03605309908821434. |
[28] |
X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations,, \emph{Adv. Differential Equations}, 5 (2000), 899.
|
[29] |
T. Kato, Perturbation Theory for Linear Operators,, second ed., (1976).
|
[30] |
O. Kwon, Existence of multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations with potentials vanishing at infinity,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 139A (2009), 833.
doi: 10.1017/S0308210508000309. |
[31] |
C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains,, \emph{Comm. Partial Differential Equations, 16 (1996), 585.
doi: 10.1080/03605309108820770. |
[32] |
Y. Y. Li, On a singular perturbed elliptic equation,, \emph{Adv. Differential Equations}, 2 (1997), 955.
|
[33] |
F. Mahmoudi and A. Malchiodi, Concentration on minimal submainifolds for a singularly perturbed Neumann problem,, \emph{Adv. Math.}, 209 (2007), 460.
doi: 10.1016/j.aim.2006.05.014. |
[34] |
F. Mahmoudi, R. Mazzeo and F. Pacard, Constant mean curvature hypersurfaces condensing on a submanifold,, \emph{Geom. Funct. Anal.}, 16 (2006), 924.
doi: 10.1007/s00039-006-0566-7. |
[35] |
F. Mahmoudi, F. S. Sánchez and W. Yao, On the Ambrosetti-Malchiodi-Ni conjecture for general submanifolds,, \emph{J. Differential Equations}, 258 (2015), 243.
doi: 10.1016/j.jde.2014.09.010. |
[36] |
A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains,, \emph{G.A.F.A.}, 15-16 (2005), 15.
doi: 10.1007/s00039-005-0542-7. |
[37] |
A. Malchiodi and M. Montenegro, Boundary concentration phenomena for a singularly perturbed elliptic problem,, \emph{Comm. Pure Appl. Math.}, 15 (2002), 1507.
doi: 10.1002/cpa.10049. |
[38] |
A. Malchiodi and M. Montenegro, Multidimensional boundary-layers for a singularly perturbed Neumann problem,, \emph{Duke Math. J.}, 124 (2004), 105.
doi: 10.1215/S0012-7094-04-12414-5. |
[39] |
S. Minakshisundaram and and A. Pleijel, Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds,, \emph{Canad. J. Math.}, 1 (1949), 242.
|
[40] |
Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_a$,, \emph{Comm. Partial Differential Equations}, 13 (1988), 1499.
doi: 10.1080/03605308808820585. |
[41] |
Y. G. Oh, Correction to: Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_a$,, \emph{Comm. Partial Differential Equations}, 14 (1989), 833.
doi: 10.1080/03605308908820631. |
[42] |
Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multile well potential,, \emph{Comm. Math. Phys.}, 131 (1990), 223.
|
[43] |
P. H. Rabinowitz, On a class of nonlinear Schrödinger equations,, \emph{Z. Angew. Math. Phys.}, 43 (1992), 270.
doi: 10.1007/BF00946631. |
[44] |
Y. Sato, Multi-peak positive solutions for nonlinear Schrödinger equations with critical frequency,, \emph{Calc. Var. Partial Differential Equations}, 29 (2007), 365.
doi: 10.1007/s00526-006-0070-9. |
[45] |
B. Sirakov, Standing wave solutions of the nonlinear Schrödinger equation in $R^N$,, \emph{Ann. Mat. Pura Appl.}, 184 (2002), 73.
doi: 10.1007/s102310200029. |
[46] |
W. Strauss, Existence of solitary waves in higher demensions,, \emph{Comm. Math. Phys.}, 55 (1977), 149.
|
[47] |
J. Su, Z.-Q. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials,, \emph{J. Differential Equations}, 238 (2007), 201.
doi: 10.1016/j.jde.2007.03.018. |
[48] |
L. P. Wang, J. Wei and J. Yang, On Ambrosetti-Malchiodi-Ni conjecture for general hypersurfaces,, \emph{Comm. Partial Differential Equations}, 36 (2011), 2117.
doi: 10.1080/03605302.2011.580033. |
[49] |
X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations,, \emph{Comm. Math. Phys.}, 153 (1993), 229.
|
[50] |
Z.-Q. Wang, Existence and symmetry of multi-bump solutions for nonlinear Schrödinger equations,, \emph{J. Differential Equations}, 159 (1999), 102.
doi: 10.1006/jdeq.1999.3650. |
show all references
References:
[1] |
A. Ambrosetti, A. Malchiodi and W.-M Ni, Singularly perturves elliptic equation with symmetry: existence of solutions concentrating on spheres. I,, \emph{Comm. Math. Phys.}, 235 (2003), 427.
doi: 10.1007/s00220-003-0811-y. |
[2] |
A. Ambrosetti, A. Malchiodi and D. Ruiz, Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity,, \emph{J. d'Anayse Math.}, 98 (2006), 317.
doi: 10.1007/BF02790279. |
[3] |
A. Ambrosetti, A. Malchiodi and A. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials,, \emph{Arch. Rational Mech. Anal.}, 159 (2001), 253.
doi: 10.1007/s002050100152. |
[4] |
A. Ambrosetti and D. Ruiz, Radial solutions concentrating on sphere of nonlinear Schrödinger equations with vanishing potentials,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 136 (2006), 889.
doi: 10.1017/S0308210500004789. |
[5] |
M. Badiale. and T. D'Aprile, Concentration around a sphere for a singulary perturbed Schrödinger equation,, \emph{Nonlinear Anal.}, 49 (2002), 947.
doi: 10.1016/S0362-546X(01)00717-9. |
[6] |
V. Benci. and T. D'Aprile, The semiclassical limit of the nonlinear Schrödinger equation in a radial potential,, \emph{J. Diff. Equat.}, 184 (2002), 109.
doi: 10.1006/jdeq.2001.4138. |
[7] |
J. Byeon, Standing Waves for nonlinear Schrödinger equations with a radial potential,, \emph{Nonlinear Anal.}, 50 (2002), 1135.
doi: 10.1016/S0362-546X(01)00805-7. |
[8] |
J. Byeon and Y. Oshita, Existence of multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations,, \emph{Comm. Partial Differential Equations}, 29 (2004), 1877.
doi: 10.1081/PDE-200040205. |
[9] |
J. Byeon and Y. Oshita, Uniqueness of a standing wave for nonlinear Schrödinger equations,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 138A (2008), 975.
doi: 10.1017/S0308210507000236. |
[10] |
J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations,, \emph{Arch. Rational Mech. Anal.}, 165 (2002), 295.
doi: 10.1007/s00205-002-0225-6. |
[11] |
J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations. II,, \emph{Calc. Var. Partial Differential Equations}, 18 (2003), 207.
doi: 10.1007/s00526-002-0191-8. |
[12] |
D. Cao, E. S. Noussair and S. Yan, Multiscale-bump standing waves with a critical frequency for nonlinear Schrödinger equations,, to appear in \emph{Trans. of AMS}., ().
doi: 10.1090/S0002-9947-08-04348-1. |
[13] |
D. Cao and S. Peng, Multi-bump bound states of Schrödinger equations with a critical frequency,, \emph{Math. Ann}, 336 (2006), 925.
doi: 10.1007/s00208-006-0021-y. |
[14] |
E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations,, \emph{J. Differential Equations}, 74 (1998), 120.
doi: 10.1016/0022-0396(88)90021-6. |
[15] |
E. N. Dancer and S. Yan, On the existence of multipeak solutions for nonlinear field equations on $R^N$,, \emph{Discrete Contin. Dynam. Systems, 6 (2000), 39.
|
[16] |
E. N. Dancer, K. Y. Lam and S. Yan, The effect of the graph topology on the existence of multipeak solutions for nonlinear Schrödinger equations,, \emph{Abstr. Apply. Anal.}, 3 (1998), 293.
doi: 10.1155/S1085337598000578. |
[17] |
M. del Pino and P. L. Felmer, Local mountaion passes for semilinear elliptic problems in unbounded domains,, \emph{Calc. Var. Partial Differential Equations}, 4 (1996), 121.
doi: 10.1007/BF01189950. |
[18] |
M. del Pino and P. L. Felmer, Semi-classical states for nonlinear Schrödinger equations,, \emph{J. Funct. Anal.}, 149 (1997), 245.
doi: 10.1006/jfan.1996.3085. |
[19] |
M. del Pino and P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations,, \emph{Ann. Inst. Henri Poincar\'e}, 15 (1998), 127.
doi: 10.1016/S0294-1449(97)89296-7. |
[20] |
M. del Pino and P. L. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method,, \emph{Math. Ann.}, 324 (2002), 1.
doi: 10.1007/s002080200327. |
[21] |
M. del Pino, P. L. Felmer and O. H. Miyagaki, Existence of positive bound states of nonlinear Schrödinger equations with saddle-like potential,, \emph{Nonlinear Anal. TMA, 34 (1998), 979.
doi: 10.1016/S0362-546X(97)00593-2. |
[22] |
M. del Pino, M. Kowalczyk and J.-C. Wei, Concentration on curves for nonlinear Schrödinger equations,, \emph{Comm. Pur. App. Math.}, LX (2007), 113.
doi: 10.1002/cpa.20135. |
[23] |
A. Floer and A. Weinstein, Non spreading wave packets for the cubic Schrödinger equations with a bounded potential,, \emph{J. Funct. Anal.}, 69 (1986), 397.
doi: 10.1016/0022-1236(86)90096-0. |
[24] |
B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, \emph{Comm. Math. Phys., 68 (1979), 209.
|
[25] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, 2nd ed., (1983).
doi: 10.1007/978-3-642-61798-0. |
[26] |
C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method,, \emph{Comm. Partial Differential Equations}, 21 (1996), 787.
doi: 10.1080/03605309608821208. |
[27] |
Y. Kabeya and K. Tanaka, Uniqueness of positive solutions of semilinear elliptic equations in $R^N$ and Séré's non-degeneracy condition,, \emph{Comm. Partial Differential Equations, 24 (1999), 563.
doi: 10.1080/03605309908821434. |
[28] |
X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations,, \emph{Adv. Differential Equations}, 5 (2000), 899.
|
[29] |
T. Kato, Perturbation Theory for Linear Operators,, second ed., (1976).
|
[30] |
O. Kwon, Existence of multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations with potentials vanishing at infinity,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 139A (2009), 833.
doi: 10.1017/S0308210508000309. |
[31] |
C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains,, \emph{Comm. Partial Differential Equations, 16 (1996), 585.
doi: 10.1080/03605309108820770. |
[32] |
Y. Y. Li, On a singular perturbed elliptic equation,, \emph{Adv. Differential Equations}, 2 (1997), 955.
|
[33] |
F. Mahmoudi and A. Malchiodi, Concentration on minimal submainifolds for a singularly perturbed Neumann problem,, \emph{Adv. Math.}, 209 (2007), 460.
doi: 10.1016/j.aim.2006.05.014. |
[34] |
F. Mahmoudi, R. Mazzeo and F. Pacard, Constant mean curvature hypersurfaces condensing on a submanifold,, \emph{Geom. Funct. Anal.}, 16 (2006), 924.
doi: 10.1007/s00039-006-0566-7. |
[35] |
F. Mahmoudi, F. S. Sánchez and W. Yao, On the Ambrosetti-Malchiodi-Ni conjecture for general submanifolds,, \emph{J. Differential Equations}, 258 (2015), 243.
doi: 10.1016/j.jde.2014.09.010. |
[36] |
A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains,, \emph{G.A.F.A.}, 15-16 (2005), 15.
doi: 10.1007/s00039-005-0542-7. |
[37] |
A. Malchiodi and M. Montenegro, Boundary concentration phenomena for a singularly perturbed elliptic problem,, \emph{Comm. Pure Appl. Math.}, 15 (2002), 1507.
doi: 10.1002/cpa.10049. |
[38] |
A. Malchiodi and M. Montenegro, Multidimensional boundary-layers for a singularly perturbed Neumann problem,, \emph{Duke Math. J.}, 124 (2004), 105.
doi: 10.1215/S0012-7094-04-12414-5. |
[39] |
S. Minakshisundaram and and A. Pleijel, Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds,, \emph{Canad. J. Math.}, 1 (1949), 242.
|
[40] |
Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_a$,, \emph{Comm. Partial Differential Equations}, 13 (1988), 1499.
doi: 10.1080/03605308808820585. |
[41] |
Y. G. Oh, Correction to: Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_a$,, \emph{Comm. Partial Differential Equations}, 14 (1989), 833.
doi: 10.1080/03605308908820631. |
[42] |
Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multile well potential,, \emph{Comm. Math. Phys.}, 131 (1990), 223.
|
[43] |
P. H. Rabinowitz, On a class of nonlinear Schrödinger equations,, \emph{Z. Angew. Math. Phys.}, 43 (1992), 270.
doi: 10.1007/BF00946631. |
[44] |
Y. Sato, Multi-peak positive solutions for nonlinear Schrödinger equations with critical frequency,, \emph{Calc. Var. Partial Differential Equations}, 29 (2007), 365.
doi: 10.1007/s00526-006-0070-9. |
[45] |
B. Sirakov, Standing wave solutions of the nonlinear Schrödinger equation in $R^N$,, \emph{Ann. Mat. Pura Appl.}, 184 (2002), 73.
doi: 10.1007/s102310200029. |
[46] |
W. Strauss, Existence of solitary waves in higher demensions,, \emph{Comm. Math. Phys.}, 55 (1977), 149.
|
[47] |
J. Su, Z.-Q. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials,, \emph{J. Differential Equations}, 238 (2007), 201.
doi: 10.1016/j.jde.2007.03.018. |
[48] |
L. P. Wang, J. Wei and J. Yang, On Ambrosetti-Malchiodi-Ni conjecture for general hypersurfaces,, \emph{Comm. Partial Differential Equations}, 36 (2011), 2117.
doi: 10.1080/03605302.2011.580033. |
[49] |
X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations,, \emph{Comm. Math. Phys.}, 153 (1993), 229.
|
[50] |
Z.-Q. Wang, Existence and symmetry of multi-bump solutions for nonlinear Schrödinger equations,, \emph{J. Differential Equations}, 159 (1999), 102.
doi: 10.1006/jdeq.1999.3650. |
[1] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020447 |
[2] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[3] |
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020456 |
[4] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[5] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[6] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[7] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[8] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[9] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[10] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[11] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[12] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[13] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[14] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[15] |
Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 |
[16] |
Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323 |
[17] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[18] |
Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020349 |
[19] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[20] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]