May  2015, 14(3): 881-896. doi: 10.3934/cpaa.2015.14.881

No--flux boundary value problems with anisotropic variable exponents

1. 

Department of Mathematics, University of Craiova, A.I. Cuza Street 13, 200585 Craiova

2. 

Department of Applied Mathematics, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania

Received  June 2014 Revised  November 2014 Published  March 2015

We are concerned with elliptic problems involving generalized anisotropic operators with variable exponents and a nonlinearity $f$. For such problems with no-flux boundary conditions we establish the existence, the uniqueness, or the multiplicity of weak solutions, under various hypotheses.
Citation: Maria-Magdalena Boureanu, Cristian Udrea. No--flux boundary value problems with anisotropic variable exponents. Communications on Pure and Applied Analysis, 2015, 14 (3) : 881-896. doi: 10.3934/cpaa.2015.14.881
References:
[1]

S. N. Antontsev and J. F. Rodrigues, On stationary thermorheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 19-36. doi: 10.1007/s11565-006-0002-9.

[2]

M.-M. Boureanu, A new class of general operators involved in anisotropic systems with variable exponents, submitted.

[3]

M.-M. Boureanu, Infinitely many solutions for a class of degenerate anisotropic elliptic problems with variable exponent, Taiwanese Journal of Mathematics, 5 (2011), 2291-2310.

[4]

M.-M. Boureanu, A. Matei and M. Sofonea, Nonlinear problems with $p(\cdot)$-growth conditions and applications to antiplane contact models, Advanced Nonlinear Studies, 14 (2014), 295-313.

[5]

M.-M. Boureanu and V. Rădulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear Anal. TMA, 75 (2012), 4471-4482. doi: 10.1016/j.na.2011.09.033.

[6]

M.-M Boureanu, C. Udrea and D.-N.Udrea, Anisotropic problems with variable exponents and constant Dirichlet condition, Electron. J. Diff. Equ., 2013 (2013), 1-13.

[7]

M.-M Boureanu and D.-N. Udrea, Existence and multiplicity result for elliptic problems with $p(\cdot)$-Growth conditions, Nonlinear Anal.: Real World Applications, 14 (2013), 1829-1844. doi: 10.1016/j.nonrwa.2012.12.001.

[8]

Y. Chen, S. Levine and R. Rao, Variable exponent, linear growth functionals in image restoration, SIAM Journal of Applied Mathematics, 66 (2006), 1383-1406. doi: 10.1137/050624522.

[9]

D. G. Costa, An Invitation to Variational Methods in Differential Equations, Birkhäuser, Boston, 2007. doi: 10.1007/978-0-8176-4536-6.

[10]

X. Fan, Anisotropic variable exponent Sobolev spaces and $p(\cdot)$-Laplacian equations, Complex Variables and Elliptic Equations, 55 (2010), 1-20. doi: 10.1080/17476931003728412.

[11]

X. Fan and S.-G Deng, Remarks on Ricceri's variational principle and applications to the $p(x)-$Laplacian equations, Nonlinear Analysis TMA, 67 (2007), 3064-3075. doi: 10.1016/j.na.2006.09.060.

[12]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446. doi: 10.1006/jmaa.2000.7617.

[13]

S. Gaucel and M. Langlais, Some remarks on a singular reaction-diffusion system arising in predator-prey modeling, Discrete and Continuous Dynamical Systems-Series B, 8 (2007), 61-72. doi: 10.3934/dcdsb.2007.8.61.

[14]

Y. Jabri, The Mountain Pass Theorem. Variants, Generalizations and Some Applications, Cambridge University Press, 2003. doi: 10.1017/CBO9780511546655.

[15]

B. Kone, S. Ouaro and S. Traore, Weak solutions for anisotropic nonlinear elliptic equations with variable exponents, Electronic Journal of Differential Equations, 2009 (2009), 1-11.

[16]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J., 41 (1991), 592-618.

[17]

A. Kristály, V. Rădulescu and C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, 136, Cambridge University Press, Cambridge, 2010. doi: 10.1017/CBO9780511760631.

[18]

A. J. Kurdila and M. Zabarankin, Convex Functional Analysis, Birkhäuser Verlag, 2005.

[19]

V. K. Le, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces, Nonlinear Anal. TMA, 71 (2009), 3305-3321. doi: 10.1016/j.na.2009.01.211.

[20]

V. K. Le and K. Schmitt, Sub-supersolution theorens for quasilinear elliptic problems: a variational approach, Electronic Journal of Differential Equations, 2004 (2004), 1-7.

[21]

Y. Liu, R. Davidson and P. Taylor, Investigation of the touch sensitivity of ER fluid based tactile display, Proceedings of SPIE, Smart Structures and Materials: Smart Structures and Integrated Systems, 5764 (2005), 92-99.

[22]

M. Mihăilescu and G. Moroşanu, Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions, Applicable Analysis, 89 (2010), 257-271. doi: 10.1080/00036810802713826.

[23]

J. Ovadia and Q. Nie, Stem cell niche structure as an inherent cause of undulating epithelial morphologies, Biophysical Journal, 104 (2013), 237-246.

[24]

P. Pucci and V. Rădulescu, The impact of the mountain pass theory in nonlinear analysis: a mathematical survey, Boll. Unione Mat. Ital. Series IX, 3 (2010), 543-584.

[25]

N. Rodriguez, On the global well-posedness theory for a class of PDE models for criminal activity, Physica D, 260 (2013), 191-200. doi: 10.1016/j.physd.2012.08.003.

[26]

M. R.užička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2002.

[27]

A. J. Simmonds, Electro-rheological valves in a hydraulic circuit, IEE Proceedings-D, 138 (1991), 400-404.

[28]

R. Stanway, J. L. Sproston and A. K. El-Wahed, Applications of electrorheological fluids in vibration control: a survey, Smart Mater. Struct., 5 (1996), 464-482.

[29]

L. Zhao, P. Zhao and X. Xie, Existence and multiplicity of solutions for divergence type elliptic equations, Electronic Journal of Differential Equations, 2011 (2011), 1-9.

[30]

V. V. Zhikov, Averaging of functionals in the calculus of variations and elasticity, Math. USSR Izv., 29 (1987), 33-66.

show all references

References:
[1]

S. N. Antontsev and J. F. Rodrigues, On stationary thermorheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 19-36. doi: 10.1007/s11565-006-0002-9.

[2]

M.-M. Boureanu, A new class of general operators involved in anisotropic systems with variable exponents, submitted.

[3]

M.-M. Boureanu, Infinitely many solutions for a class of degenerate anisotropic elliptic problems with variable exponent, Taiwanese Journal of Mathematics, 5 (2011), 2291-2310.

[4]

M.-M. Boureanu, A. Matei and M. Sofonea, Nonlinear problems with $p(\cdot)$-growth conditions and applications to antiplane contact models, Advanced Nonlinear Studies, 14 (2014), 295-313.

[5]

M.-M. Boureanu and V. Rădulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear Anal. TMA, 75 (2012), 4471-4482. doi: 10.1016/j.na.2011.09.033.

[6]

M.-M Boureanu, C. Udrea and D.-N.Udrea, Anisotropic problems with variable exponents and constant Dirichlet condition, Electron. J. Diff. Equ., 2013 (2013), 1-13.

[7]

M.-M Boureanu and D.-N. Udrea, Existence and multiplicity result for elliptic problems with $p(\cdot)$-Growth conditions, Nonlinear Anal.: Real World Applications, 14 (2013), 1829-1844. doi: 10.1016/j.nonrwa.2012.12.001.

[8]

Y. Chen, S. Levine and R. Rao, Variable exponent, linear growth functionals in image restoration, SIAM Journal of Applied Mathematics, 66 (2006), 1383-1406. doi: 10.1137/050624522.

[9]

D. G. Costa, An Invitation to Variational Methods in Differential Equations, Birkhäuser, Boston, 2007. doi: 10.1007/978-0-8176-4536-6.

[10]

X. Fan, Anisotropic variable exponent Sobolev spaces and $p(\cdot)$-Laplacian equations, Complex Variables and Elliptic Equations, 55 (2010), 1-20. doi: 10.1080/17476931003728412.

[11]

X. Fan and S.-G Deng, Remarks on Ricceri's variational principle and applications to the $p(x)-$Laplacian equations, Nonlinear Analysis TMA, 67 (2007), 3064-3075. doi: 10.1016/j.na.2006.09.060.

[12]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446. doi: 10.1006/jmaa.2000.7617.

[13]

S. Gaucel and M. Langlais, Some remarks on a singular reaction-diffusion system arising in predator-prey modeling, Discrete and Continuous Dynamical Systems-Series B, 8 (2007), 61-72. doi: 10.3934/dcdsb.2007.8.61.

[14]

Y. Jabri, The Mountain Pass Theorem. Variants, Generalizations and Some Applications, Cambridge University Press, 2003. doi: 10.1017/CBO9780511546655.

[15]

B. Kone, S. Ouaro and S. Traore, Weak solutions for anisotropic nonlinear elliptic equations with variable exponents, Electronic Journal of Differential Equations, 2009 (2009), 1-11.

[16]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J., 41 (1991), 592-618.

[17]

A. Kristály, V. Rădulescu and C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, 136, Cambridge University Press, Cambridge, 2010. doi: 10.1017/CBO9780511760631.

[18]

A. J. Kurdila and M. Zabarankin, Convex Functional Analysis, Birkhäuser Verlag, 2005.

[19]

V. K. Le, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces, Nonlinear Anal. TMA, 71 (2009), 3305-3321. doi: 10.1016/j.na.2009.01.211.

[20]

V. K. Le and K. Schmitt, Sub-supersolution theorens for quasilinear elliptic problems: a variational approach, Electronic Journal of Differential Equations, 2004 (2004), 1-7.

[21]

Y. Liu, R. Davidson and P. Taylor, Investigation of the touch sensitivity of ER fluid based tactile display, Proceedings of SPIE, Smart Structures and Materials: Smart Structures and Integrated Systems, 5764 (2005), 92-99.

[22]

M. Mihăilescu and G. Moroşanu, Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions, Applicable Analysis, 89 (2010), 257-271. doi: 10.1080/00036810802713826.

[23]

J. Ovadia and Q. Nie, Stem cell niche structure as an inherent cause of undulating epithelial morphologies, Biophysical Journal, 104 (2013), 237-246.

[24]

P. Pucci and V. Rădulescu, The impact of the mountain pass theory in nonlinear analysis: a mathematical survey, Boll. Unione Mat. Ital. Series IX, 3 (2010), 543-584.

[25]

N. Rodriguez, On the global well-posedness theory for a class of PDE models for criminal activity, Physica D, 260 (2013), 191-200. doi: 10.1016/j.physd.2012.08.003.

[26]

M. R.užička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2002.

[27]

A. J. Simmonds, Electro-rheological valves in a hydraulic circuit, IEE Proceedings-D, 138 (1991), 400-404.

[28]

R. Stanway, J. L. Sproston and A. K. El-Wahed, Applications of electrorheological fluids in vibration control: a survey, Smart Mater. Struct., 5 (1996), 464-482.

[29]

L. Zhao, P. Zhao and X. Xie, Existence and multiplicity of solutions for divergence type elliptic equations, Electronic Journal of Differential Equations, 2011 (2011), 1-9.

[30]

V. V. Zhikov, Averaging of functionals in the calculus of variations and elasticity, Math. USSR Izv., 29 (1987), 33-66.

[1]

Inbo Sim, Yun-Ho Kim. Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents. Conference Publications, 2013, 2013 (special) : 695-707. doi: 10.3934/proc.2013.2013.695

[2]

Yoshifumi Mimura. Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1603-1630. doi: 10.3934/dcds.2017066

[3]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure and Applied Analysis, 2021, 20 (2) : 697-735. doi: 10.3934/cpaa.2020286

[4]

Mostafa Bendahmane, Kenneth Hvistendahl Karlsen, Mazen Saad. Nonlinear anisotropic elliptic and parabolic equations with variable exponents and $L^1$ data. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1201-1220. doi: 10.3934/cpaa.2013.12.1201

[5]

Jiafeng Liao, Peng Zhang, Jiu Liu, Chunlei Tang. Existence and multiplicity of positive solutions for a class of Kirchhoff type problems at resonance. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1959-1974. doi: 10.3934/dcdss.2016080

[6]

Ahmed Aberqi, Jaouad Bennouna, Omar Benslimane, Maria Alessandra Ragusa. Weak solvability of nonlinear elliptic equations involving variable exponents. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022105

[7]

Meihua Wei, Yanling Li, Xi Wei. Stability and bifurcation with singularity for a glycolysis model under no-flux boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5203-5224. doi: 10.3934/dcdsb.2019129

[8]

Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure and Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439

[9]

F. R. Pereira. Multiple solutions for a class of Ambrosetti-Prodi type problems for systems involving critical Sobolev exponents. Communications on Pure and Applied Analysis, 2008, 7 (2) : 355-372. doi: 10.3934/cpaa.2008.7.355

[10]

M. Chuaqui, C. Cortázar, M. Elgueta, J. García-Melián. Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights. Communications on Pure and Applied Analysis, 2004, 3 (4) : 653-662. doi: 10.3934/cpaa.2004.3.653

[11]

SYLWIA DUDEK, IWONA SKRZYPCZAK. Liouville theorems for elliptic problems in variable exponent spaces. Communications on Pure and Applied Analysis, 2017, 16 (2) : 513-532. doi: 10.3934/cpaa.2017026

[12]

Mingxin Wang. Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 415-421. doi: 10.3934/dcdsb.2018179

[13]

Mingxin Wang. Erratum: Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021269

[14]

M.J. Lopez-Herrero. The existence of weak solutions for a general class of mixed boundary value problems. Conference Publications, 2011, 2011 (Special) : 1015-1024. doi: 10.3934/proc.2011.2011.1015

[15]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure and Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[16]

Bernhard Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 683-690. doi: 10.3934/dcds.2000.6.683

[17]

Daniel Franco, Donal O'Regan. Existence of solutions to second order problems with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 273-280. doi: 10.3934/proc.2003.2003.273

[18]

Mustapha Cheggag, Angelo Favini, Rabah Labbas, Stéphane Maingot, Ahmed Medeghri. Complete abstract differential equations of elliptic type with general Robin boundary conditions, in UMD spaces. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 523-538. doi: 10.3934/dcdss.2011.4.523

[19]

Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007

[20]

Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure and Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (104)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]