May  2015, 14(3): 881-896. doi: 10.3934/cpaa.2015.14.881

No--flux boundary value problems with anisotropic variable exponents

1. 

Department of Mathematics, University of Craiova, A.I. Cuza Street 13, 200585 Craiova

2. 

Department of Applied Mathematics, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania

Received  June 2014 Revised  November 2014 Published  March 2015

We are concerned with elliptic problems involving generalized anisotropic operators with variable exponents and a nonlinearity $f$. For such problems with no-flux boundary conditions we establish the existence, the uniqueness, or the multiplicity of weak solutions, under various hypotheses.
Citation: Maria-Magdalena Boureanu, Cristian Udrea. No--flux boundary value problems with anisotropic variable exponents. Communications on Pure & Applied Analysis, 2015, 14 (3) : 881-896. doi: 10.3934/cpaa.2015.14.881
References:
[1]

S. N. Antontsev and J. F. Rodrigues, On stationary thermorheological viscous flows,, \emph{Ann. Univ. Ferrara Sez. VII Sci. Mat.}, 52 (2006), 19.  doi: 10.1007/s11565-006-0002-9.  Google Scholar

[2]

M.-M. Boureanu, A new class of general operators involved in anisotropic systems with variable exponents,, submitted., ().   Google Scholar

[3]

M.-M. Boureanu, Infinitely many solutions for a class of degenerate anisotropic elliptic problems with variable exponent,, \emph{Taiwanese Journal of Mathematics}, 5 (2011), 2291.   Google Scholar

[4]

M.-M. Boureanu, A. Matei and M. Sofonea, Nonlinear problems with $p(\cdot)$-growth conditions and applications to antiplane contact models,, \emph{Advanced Nonlinear Studies}, 14 (2014), 295.   Google Scholar

[5]

M.-M. Boureanu and V. Rădulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent,, \emph{Nonlinear Anal. TMA}, 75 (2012), 4471.  doi: 10.1016/j.na.2011.09.033.  Google Scholar

[6]

M.-M Boureanu, C. Udrea and D.-N.Udrea, Anisotropic problems with variable exponents and constant Dirichlet condition,, \emph{Electron. J. Diff. Equ.}, 2013 (2013), 1.   Google Scholar

[7]

M.-M Boureanu and D.-N. Udrea, Existence and multiplicity result for elliptic problems with $p(\cdot)$-Growth conditions,, \emph{Nonlinear Anal.: Real World Applications}, 14 (2013), 1829.  doi: 10.1016/j.nonrwa.2012.12.001.  Google Scholar

[8]

Y. Chen, S. Levine and R. Rao, Variable exponent, linear growth functionals in image restoration,, \emph{SIAM Journal of Applied Mathematics}, 66 (2006), 1383.  doi: 10.1137/050624522.  Google Scholar

[9]

D. G. Costa, An Invitation to Variational Methods in Differential Equations,, Birkh\, (2007).  doi: 10.1007/978-0-8176-4536-6.  Google Scholar

[10]

X. Fan, Anisotropic variable exponent Sobolev spaces and $p(\cdot)$-Laplacian equations,, \emph{Complex Variables and Elliptic Equations}, 55 (2010), 1.  doi: 10.1080/17476931003728412.  Google Scholar

[11]

X. Fan and S.-G Deng, Remarks on Ricceri's variational principle and applications to the $p(x)-$Laplacian equations,, \emph{Nonlinear Analysis TMA}, 67 (2007), 3064.  doi: 10.1016/j.na.2006.09.060.  Google Scholar

[12]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, \emph{J. Math. Anal. Appl.}, 263 (2001), 424.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[13]

S. Gaucel and M. Langlais, Some remarks on a singular reaction-diffusion system arising in predator-prey modeling,, \emph{Discrete and Continuous Dynamical Systems-Series B}, 8 (2007), 61.  doi: 10.3934/dcdsb.2007.8.61.  Google Scholar

[14]

Y. Jabri, The Mountain Pass Theorem. Variants, Generalizations and Some Applications,, Cambridge University Press, (2003).  doi: 10.1017/CBO9780511546655.  Google Scholar

[15]

B. Kone, S. Ouaro and S. Traore, Weak solutions for anisotropic nonlinear elliptic equations with variable exponents,, \emph{Electronic Journal of Differential Equations}, 2009 (2009), 1.   Google Scholar

[16]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$,, \emph{Czechoslovak Math. J.}, 41 (1991), 592.   Google Scholar

[17]

A. Kristály, V. Rădulescu and C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems,, Encyclopedia of Mathematics and its Applications, 136 (2010).  doi: 10.1017/CBO9780511760631.  Google Scholar

[18]

A. J. Kurdila and M. Zabarankin, Convex Functional Analysis,, Birkh\, (2005).   Google Scholar

[19]

V. K. Le, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces,, \emph{Nonlinear Anal. TMA}, 71 (2009), 3305.  doi: 10.1016/j.na.2009.01.211.  Google Scholar

[20]

V. K. Le and K. Schmitt, Sub-supersolution theorens for quasilinear elliptic problems: a variational approach,, \emph{Electronic Journal of Differential Equations}, 2004 (2004), 1.   Google Scholar

[21]

Y. Liu, R. Davidson and P. Taylor, Investigation of the touch sensitivity of ER fluid based tactile display,, \emph{Proceedings of SPIE, 5764 (2005), 92.   Google Scholar

[22]

M. Mihăilescu and G. Moroşanu, Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions,, \emph{Applicable Analysis}, 89 (2010), 257.  doi: 10.1080/00036810802713826.  Google Scholar

[23]

J. Ovadia and Q. Nie, Stem cell niche structure as an inherent cause of undulating epithelial morphologies,, \emph{Biophysical Journal}, 104 (2013), 237.   Google Scholar

[24]

P. Pucci and V. Rădulescu, The impact of the mountain pass theory in nonlinear analysis: a mathematical survey,, \emph{Boll. Unione Mat. Ital. Series IX}, 3 (2010), 543.   Google Scholar

[25]

N. Rodriguez, On the global well-posedness theory for a class of PDE models for criminal activity,, \emph{Physica D}, 260 (2013), 191.  doi: 10.1016/j.physd.2012.08.003.  Google Scholar

[26]

M. R.užička, Electrorheological Fluids: Modeling and Mathematical Theory,, Springer-Verlag, (2002).   Google Scholar

[27]

A. J. Simmonds, Electro-rheological valves in a hydraulic circuit,, \emph{IEE Proceedings-D}, 138 (1991), 400.   Google Scholar

[28]

R. Stanway, J. L. Sproston and A. K. El-Wahed, Applications of electrorheological fluids in vibration control: a survey,, \emph{Smart Mater. Struct.}, 5 (1996), 464.   Google Scholar

[29]

L. Zhao, P. Zhao and X. Xie, Existence and multiplicity of solutions for divergence type elliptic equations,, \emph{Electronic Journal of Differential Equations}, 2011 (2011), 1.   Google Scholar

[30]

V. V. Zhikov, Averaging of functionals in the calculus of variations and elasticity,, \emph{Math. USSR Izv.}, 29 (1987), 33.   Google Scholar

show all references

References:
[1]

S. N. Antontsev and J. F. Rodrigues, On stationary thermorheological viscous flows,, \emph{Ann. Univ. Ferrara Sez. VII Sci. Mat.}, 52 (2006), 19.  doi: 10.1007/s11565-006-0002-9.  Google Scholar

[2]

M.-M. Boureanu, A new class of general operators involved in anisotropic systems with variable exponents,, submitted., ().   Google Scholar

[3]

M.-M. Boureanu, Infinitely many solutions for a class of degenerate anisotropic elliptic problems with variable exponent,, \emph{Taiwanese Journal of Mathematics}, 5 (2011), 2291.   Google Scholar

[4]

M.-M. Boureanu, A. Matei and M. Sofonea, Nonlinear problems with $p(\cdot)$-growth conditions and applications to antiplane contact models,, \emph{Advanced Nonlinear Studies}, 14 (2014), 295.   Google Scholar

[5]

M.-M. Boureanu and V. Rădulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent,, \emph{Nonlinear Anal. TMA}, 75 (2012), 4471.  doi: 10.1016/j.na.2011.09.033.  Google Scholar

[6]

M.-M Boureanu, C. Udrea and D.-N.Udrea, Anisotropic problems with variable exponents and constant Dirichlet condition,, \emph{Electron. J. Diff. Equ.}, 2013 (2013), 1.   Google Scholar

[7]

M.-M Boureanu and D.-N. Udrea, Existence and multiplicity result for elliptic problems with $p(\cdot)$-Growth conditions,, \emph{Nonlinear Anal.: Real World Applications}, 14 (2013), 1829.  doi: 10.1016/j.nonrwa.2012.12.001.  Google Scholar

[8]

Y. Chen, S. Levine and R. Rao, Variable exponent, linear growth functionals in image restoration,, \emph{SIAM Journal of Applied Mathematics}, 66 (2006), 1383.  doi: 10.1137/050624522.  Google Scholar

[9]

D. G. Costa, An Invitation to Variational Methods in Differential Equations,, Birkh\, (2007).  doi: 10.1007/978-0-8176-4536-6.  Google Scholar

[10]

X. Fan, Anisotropic variable exponent Sobolev spaces and $p(\cdot)$-Laplacian equations,, \emph{Complex Variables and Elliptic Equations}, 55 (2010), 1.  doi: 10.1080/17476931003728412.  Google Scholar

[11]

X. Fan and S.-G Deng, Remarks on Ricceri's variational principle and applications to the $p(x)-$Laplacian equations,, \emph{Nonlinear Analysis TMA}, 67 (2007), 3064.  doi: 10.1016/j.na.2006.09.060.  Google Scholar

[12]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, \emph{J. Math. Anal. Appl.}, 263 (2001), 424.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[13]

S. Gaucel and M. Langlais, Some remarks on a singular reaction-diffusion system arising in predator-prey modeling,, \emph{Discrete and Continuous Dynamical Systems-Series B}, 8 (2007), 61.  doi: 10.3934/dcdsb.2007.8.61.  Google Scholar

[14]

Y. Jabri, The Mountain Pass Theorem. Variants, Generalizations and Some Applications,, Cambridge University Press, (2003).  doi: 10.1017/CBO9780511546655.  Google Scholar

[15]

B. Kone, S. Ouaro and S. Traore, Weak solutions for anisotropic nonlinear elliptic equations with variable exponents,, \emph{Electronic Journal of Differential Equations}, 2009 (2009), 1.   Google Scholar

[16]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$,, \emph{Czechoslovak Math. J.}, 41 (1991), 592.   Google Scholar

[17]

A. Kristály, V. Rădulescu and C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems,, Encyclopedia of Mathematics and its Applications, 136 (2010).  doi: 10.1017/CBO9780511760631.  Google Scholar

[18]

A. J. Kurdila and M. Zabarankin, Convex Functional Analysis,, Birkh\, (2005).   Google Scholar

[19]

V. K. Le, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces,, \emph{Nonlinear Anal. TMA}, 71 (2009), 3305.  doi: 10.1016/j.na.2009.01.211.  Google Scholar

[20]

V. K. Le and K. Schmitt, Sub-supersolution theorens for quasilinear elliptic problems: a variational approach,, \emph{Electronic Journal of Differential Equations}, 2004 (2004), 1.   Google Scholar

[21]

Y. Liu, R. Davidson and P. Taylor, Investigation of the touch sensitivity of ER fluid based tactile display,, \emph{Proceedings of SPIE, 5764 (2005), 92.   Google Scholar

[22]

M. Mihăilescu and G. Moroşanu, Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions,, \emph{Applicable Analysis}, 89 (2010), 257.  doi: 10.1080/00036810802713826.  Google Scholar

[23]

J. Ovadia and Q. Nie, Stem cell niche structure as an inherent cause of undulating epithelial morphologies,, \emph{Biophysical Journal}, 104 (2013), 237.   Google Scholar

[24]

P. Pucci and V. Rădulescu, The impact of the mountain pass theory in nonlinear analysis: a mathematical survey,, \emph{Boll. Unione Mat. Ital. Series IX}, 3 (2010), 543.   Google Scholar

[25]

N. Rodriguez, On the global well-posedness theory for a class of PDE models for criminal activity,, \emph{Physica D}, 260 (2013), 191.  doi: 10.1016/j.physd.2012.08.003.  Google Scholar

[26]

M. R.užička, Electrorheological Fluids: Modeling and Mathematical Theory,, Springer-Verlag, (2002).   Google Scholar

[27]

A. J. Simmonds, Electro-rheological valves in a hydraulic circuit,, \emph{IEE Proceedings-D}, 138 (1991), 400.   Google Scholar

[28]

R. Stanway, J. L. Sproston and A. K. El-Wahed, Applications of electrorheological fluids in vibration control: a survey,, \emph{Smart Mater. Struct.}, 5 (1996), 464.   Google Scholar

[29]

L. Zhao, P. Zhao and X. Xie, Existence and multiplicity of solutions for divergence type elliptic equations,, \emph{Electronic Journal of Differential Equations}, 2011 (2011), 1.   Google Scholar

[30]

V. V. Zhikov, Averaging of functionals in the calculus of variations and elasticity,, \emph{Math. USSR Izv.}, 29 (1987), 33.   Google Scholar

[1]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[2]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[3]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[4]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[5]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[6]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[7]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[8]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[11]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[12]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[15]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[16]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[17]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[18]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[19]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[20]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]