-
Previous Article
KAM Tori for generalized Benjamin-Ono equation
- CPAA Home
- This Issue
-
Next Article
Gradient estimates and comparison principle for some nonlinear elliptic equations
Traveling wave phenomena of a diffusive and vector-bias malaria model
1. | School of Mathematical Sciences, South China Normal University, Guangzhou, Guangdong 510631 |
2. | School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, China |
References:
[1] |
S. Ai, J. Li and J. Liu, Mosquito-stage-structured malaria models and their global dynamics, SIAM J. Appl. Math., 72 (2012), 1213-1237.
doi: 10.1137/110860318. |
[2] |
B. Buonomo and C. Vargas-De-León, Stability and bifurcation analysis of a vector-bias model for malaria transmission, Math. Biosci., 242 (2013), 59-67.
doi: 10.1016/j.mbs.2012.12.001. |
[3] |
F. Chamchod and N. F. Britton, Analysis of a vector-bias model on malaria transmission, Bull. Math. Biol., 73 (2011), 639-657.
doi: 10.1007/s11538-010-9545-0. |
[4] |
D. Daners and P. K. Medina, Abstract Evolution Equations, Periodic Problems and Applications, Research Notes in Mathematics, vol. 279, Harlow, Longman, 1992. |
[5] |
T. L. Daniel and J. G. Kingsolver, Feeding strategy and the mechanics of blood sucking in insects, J. Theor. Biol., 105 (1983), 661-672. |
[6] |
S. M.-A. S. Elsheihh and K. C. Patidar, Analysis of a malaria model with a distributed delay, IMA J. Appl. Math., 79 (2014), 1139-1160. |
[7] |
J. Fang, J. Wei and X.-Q. Zhao, Spatial dynamics of a nonlocal and time-delayed reaction-diffusion system, J. Differential Equations, 248 (2008), 2749-2770.
doi: 10.1016/j.jde.2008.09.001. |
[8] |
Q. Gan, R. Xu and P. Yang, Travelling waves of a hepatitis B virus infection model with spatial diffusion and time delay, IMA J. Appl. Math., 75 (2010), 392-417.
doi: 10.1093/imamat/hxq009. |
[9] |
S. I. Hay, C. A. Guerra, A. J. Tatem, A. M. Noor and R. W. Snow, The gobal distribution and population at risk of malria: past, present, and future, Lanct Infect. Dis., 4 (2004), 327-336. |
[10] |
J. Huang and X. Zou, Existence of traveling wavefronts of delayed reaction-diffusion systems without monotonicity, Discrete Contin. Dyn. Syst., 9 (2003), 925-936.
doi: 10.3934/dcds.2003.9.925. |
[11] |
J. G. Kingsolver, Mosquito host choice and the epidemiology of malaria, Am. Nat., 130 (1987), 811-827. |
[12] |
J. Li, Malaria model with stage-structured mosquitoes, Math. Biosci. Eng., 8 (2011), 753-768.
doi: 10.3934/mbe.2011.8.753. |
[13] |
J. Li and X. Zou, Modeling spatial spread of infectious diseases with afixed latent period in a spatially continuous domain, Bull. Math. Biol., 71 (2009), 2048-2079.
doi: 10.1007/s11538-009-9457-z. |
[14] |
W. T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006), 1253-1257.
doi: 10.1088/0951-7715/19/6/003. |
[15] |
X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflow with applications, Comm. Pure Appl. Math., 60 (2007), 1-40.
doi: 10.1002/cpa.20154. |
[16] |
Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568.
doi: 10.1007/s00285-010-0346-8. |
[17] |
S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314.
doi: 10.1006/jdeq.2000.3846. |
[18] |
R. Martin and H. Smith, Absract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
doi: 10.2307/2001590. |
[19] |
J. D. Murray, Mathematical Biology: I. An Introduction, Springer, New York, 2002. |
[20] |
G. M. Nayyar, J. G. Breman, P. N. Newton and J. Herrington, Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa, Lancet Infectious Diseases, 12 (2012), 488-496. |
[21] |
R. Ross, The Prevention of Malaria, 2nd edn. Murray, London, 1911. |
[22] |
P. A. Rossignol, M. C. Ribeiro, M. Jungery, M. J. Turell, A. Spielman and C. L. Bailey, Enhanced mosquito blood-finding on parasitemic hosts: evidence for vector-parasite mutualism, Proc. Natl. Acad. Sci. USA., 82 (1985), 7725-7727. |
[23] |
S. Ruan, D. Xiao and J. C. Beier, On the delayed Ross-Macdonald model for malaria transmission, Bull. Math. Biol., 70 (2008), 1098-1114.
doi: 10.1007/s11538-007-9292-z. |
[24] |
H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed Reaction-Diffusion models, J. Differential Equations, 195 (2003), 430-470.
doi: 10.1016/S0022-0396(03)00175-X. |
[25] |
C. Vargas-De-León, Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes, Math. Biosci. Eng., 9 (2012), 165-174.
doi: 10.3934/mbe.2012.9.165. |
[26] |
A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, in: Translations of Mathematical Monographs, vol. 140, Amer. Math. Soc., Providence, 1994. |
[27] |
Y. X. Wang and Z. C. Wang, Monostable waves in a time-delayed and diffusiove epidemic model,, Sciencepaper online, ().
|
[28] |
Z. C. Wang, W. T. Li and S. Ruan, Traveling wave fronts in reaction-diffusion systems with spatiotemporal delays, J. Differential Equations, 222 (2006), 185-232.
doi: 10.1016/j.jde.2005.08.010. |
[29] |
Z. C. Wang and J. Wu, Travelling waves of a diffusive Kermack-Mckendrick epidemic model with non-local delayed transmissin, Proc. R. Soc. A., 466 (2010), 237-261.
doi: 10.1098/rspa.2009.0377. |
[30] |
P. Weng and Z. Xu, Wavefronts for a global reaction-diffusion systems with nifinite distributed delay, J. Math. Anal. Appl., 345 (2008), 522-534.
doi: 10.1016/j.jmaa.2008.04.039. |
[31] |
World Health Organization, http://www.who.int/denguecontrol/en/index.html/2013, ., ().
|
[32] |
C. Wu and D. Xiao, Travelling wave solutions in anon-local and time-delayed reaction-diffusion model, IMA J. Appl. Math., 78 (2013), 1290-1317.
doi: 10.1093/imamat/hxs021. |
[33] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
[34] |
J. Wu and X. Zou, Travelling wave fronts of reaction diffusion systems with delay, J. Dyn. Differ. Equ., 13 (2001), 651-687.
doi: 10.1023/A:1016690424892. |
[35] |
Z. Xu, Traveling waves in a Kermack-Mckendrick epidemic model with diffusion and atent period, Nonlinear Analysis, 111 (2014), 66-81
doi: 10.1016/j.na.2014.08.012. |
[36] |
Z. Xu and P. Weng, Traveling waves for nonlinear and non-monotone delayed reaction-diffusion equations, Acta. Math. Sinica., English Series, 29 (2013), 2159-2180.
doi: 10.1007/s10114-013-1769-0. |
[37] |
Z. Xu and X.-Q. Zhao, A vector-bias malaria model with incubation period and diffusion, Discrete Contin. Dyn. Syst., Ser.B, 17 (2012), 2615-2634.
doi: 10.3934/dcdsb.2012.17.2615. |
[38] |
L. Zhang, B. Li and J. Shang, Stablity and travelling waves for a time-delayed population stsyem with stage structure, Nonlinear Analysis: Real World Applications, 13 (2012), 1429-1440.
doi: 10.1016/j.nonrwa.2011.11.007. |
[39] |
Y. Zhang and Z. Xu, Dynamics of a diffusive HBV model with delayed Beddington-DeAngelis response, Nonlinear Analysis: Real World Applications, 15 (2014), 118-139.
doi: 10.1016/j.nonrwa.2013.06.005. |
show all references
References:
[1] |
S. Ai, J. Li and J. Liu, Mosquito-stage-structured malaria models and their global dynamics, SIAM J. Appl. Math., 72 (2012), 1213-1237.
doi: 10.1137/110860318. |
[2] |
B. Buonomo and C. Vargas-De-León, Stability and bifurcation analysis of a vector-bias model for malaria transmission, Math. Biosci., 242 (2013), 59-67.
doi: 10.1016/j.mbs.2012.12.001. |
[3] |
F. Chamchod and N. F. Britton, Analysis of a vector-bias model on malaria transmission, Bull. Math. Biol., 73 (2011), 639-657.
doi: 10.1007/s11538-010-9545-0. |
[4] |
D. Daners and P. K. Medina, Abstract Evolution Equations, Periodic Problems and Applications, Research Notes in Mathematics, vol. 279, Harlow, Longman, 1992. |
[5] |
T. L. Daniel and J. G. Kingsolver, Feeding strategy and the mechanics of blood sucking in insects, J. Theor. Biol., 105 (1983), 661-672. |
[6] |
S. M.-A. S. Elsheihh and K. C. Patidar, Analysis of a malaria model with a distributed delay, IMA J. Appl. Math., 79 (2014), 1139-1160. |
[7] |
J. Fang, J. Wei and X.-Q. Zhao, Spatial dynamics of a nonlocal and time-delayed reaction-diffusion system, J. Differential Equations, 248 (2008), 2749-2770.
doi: 10.1016/j.jde.2008.09.001. |
[8] |
Q. Gan, R. Xu and P. Yang, Travelling waves of a hepatitis B virus infection model with spatial diffusion and time delay, IMA J. Appl. Math., 75 (2010), 392-417.
doi: 10.1093/imamat/hxq009. |
[9] |
S. I. Hay, C. A. Guerra, A. J. Tatem, A. M. Noor and R. W. Snow, The gobal distribution and population at risk of malria: past, present, and future, Lanct Infect. Dis., 4 (2004), 327-336. |
[10] |
J. Huang and X. Zou, Existence of traveling wavefronts of delayed reaction-diffusion systems without monotonicity, Discrete Contin. Dyn. Syst., 9 (2003), 925-936.
doi: 10.3934/dcds.2003.9.925. |
[11] |
J. G. Kingsolver, Mosquito host choice and the epidemiology of malaria, Am. Nat., 130 (1987), 811-827. |
[12] |
J. Li, Malaria model with stage-structured mosquitoes, Math. Biosci. Eng., 8 (2011), 753-768.
doi: 10.3934/mbe.2011.8.753. |
[13] |
J. Li and X. Zou, Modeling spatial spread of infectious diseases with afixed latent period in a spatially continuous domain, Bull. Math. Biol., 71 (2009), 2048-2079.
doi: 10.1007/s11538-009-9457-z. |
[14] |
W. T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006), 1253-1257.
doi: 10.1088/0951-7715/19/6/003. |
[15] |
X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflow with applications, Comm. Pure Appl. Math., 60 (2007), 1-40.
doi: 10.1002/cpa.20154. |
[16] |
Y. Lou and X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62 (2011), 543-568.
doi: 10.1007/s00285-010-0346-8. |
[17] |
S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314.
doi: 10.1006/jdeq.2000.3846. |
[18] |
R. Martin and H. Smith, Absract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
doi: 10.2307/2001590. |
[19] |
J. D. Murray, Mathematical Biology: I. An Introduction, Springer, New York, 2002. |
[20] |
G. M. Nayyar, J. G. Breman, P. N. Newton and J. Herrington, Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa, Lancet Infectious Diseases, 12 (2012), 488-496. |
[21] |
R. Ross, The Prevention of Malaria, 2nd edn. Murray, London, 1911. |
[22] |
P. A. Rossignol, M. C. Ribeiro, M. Jungery, M. J. Turell, A. Spielman and C. L. Bailey, Enhanced mosquito blood-finding on parasitemic hosts: evidence for vector-parasite mutualism, Proc. Natl. Acad. Sci. USA., 82 (1985), 7725-7727. |
[23] |
S. Ruan, D. Xiao and J. C. Beier, On the delayed Ross-Macdonald model for malaria transmission, Bull. Math. Biol., 70 (2008), 1098-1114.
doi: 10.1007/s11538-007-9292-z. |
[24] |
H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed Reaction-Diffusion models, J. Differential Equations, 195 (2003), 430-470.
doi: 10.1016/S0022-0396(03)00175-X. |
[25] |
C. Vargas-De-León, Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes, Math. Biosci. Eng., 9 (2012), 165-174.
doi: 10.3934/mbe.2012.9.165. |
[26] |
A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, in: Translations of Mathematical Monographs, vol. 140, Amer. Math. Soc., Providence, 1994. |
[27] |
Y. X. Wang and Z. C. Wang, Monostable waves in a time-delayed and diffusiove epidemic model,, Sciencepaper online, ().
|
[28] |
Z. C. Wang, W. T. Li and S. Ruan, Traveling wave fronts in reaction-diffusion systems with spatiotemporal delays, J. Differential Equations, 222 (2006), 185-232.
doi: 10.1016/j.jde.2005.08.010. |
[29] |
Z. C. Wang and J. Wu, Travelling waves of a diffusive Kermack-Mckendrick epidemic model with non-local delayed transmissin, Proc. R. Soc. A., 466 (2010), 237-261.
doi: 10.1098/rspa.2009.0377. |
[30] |
P. Weng and Z. Xu, Wavefronts for a global reaction-diffusion systems with nifinite distributed delay, J. Math. Anal. Appl., 345 (2008), 522-534.
doi: 10.1016/j.jmaa.2008.04.039. |
[31] |
World Health Organization, http://www.who.int/denguecontrol/en/index.html/2013, ., ().
|
[32] |
C. Wu and D. Xiao, Travelling wave solutions in anon-local and time-delayed reaction-diffusion model, IMA J. Appl. Math., 78 (2013), 1290-1317.
doi: 10.1093/imamat/hxs021. |
[33] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
[34] |
J. Wu and X. Zou, Travelling wave fronts of reaction diffusion systems with delay, J. Dyn. Differ. Equ., 13 (2001), 651-687.
doi: 10.1023/A:1016690424892. |
[35] |
Z. Xu, Traveling waves in a Kermack-Mckendrick epidemic model with diffusion and atent period, Nonlinear Analysis, 111 (2014), 66-81
doi: 10.1016/j.na.2014.08.012. |
[36] |
Z. Xu and P. Weng, Traveling waves for nonlinear and non-monotone delayed reaction-diffusion equations, Acta. Math. Sinica., English Series, 29 (2013), 2159-2180.
doi: 10.1007/s10114-013-1769-0. |
[37] |
Z. Xu and X.-Q. Zhao, A vector-bias malaria model with incubation period and diffusion, Discrete Contin. Dyn. Syst., Ser.B, 17 (2012), 2615-2634.
doi: 10.3934/dcdsb.2012.17.2615. |
[38] |
L. Zhang, B. Li and J. Shang, Stablity and travelling waves for a time-delayed population stsyem with stage structure, Nonlinear Analysis: Real World Applications, 13 (2012), 1429-1440.
doi: 10.1016/j.nonrwa.2011.11.007. |
[39] |
Y. Zhang and Z. Xu, Dynamics of a diffusive HBV model with delayed Beddington-DeAngelis response, Nonlinear Analysis: Real World Applications, 15 (2014), 118-139.
doi: 10.1016/j.nonrwa.2013.06.005. |
[1] |
Cruz Vargas-De-León. Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes. Mathematical Biosciences & Engineering, 2012, 9 (1) : 165-174. doi: 10.3934/mbe.2012.9.165 |
[2] |
Zhiting Xu, Xiao-Qiang Zhao. A vector-bias malaria model with incubation period and diffusion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2615-2634. doi: 10.3934/dcdsb.2012.17.2615 |
[3] |
Lizhong Qiang, Bin-Guo Wang. An almost periodic malaria transmission model with time-delayed input of vector. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1525-1546. doi: 10.3934/dcdsb.2017073 |
[4] |
Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526 |
[5] |
Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic and Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048 |
[6] |
Shihe Xu, Fangwei Zhang, Meng Bai. Stability of positive steady-state solutions to a time-delayed system with some applications. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021286 |
[7] |
Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220 |
[8] |
Hisashi Okamoto, Takashi Sakajo, Marcus Wunsch. Steady-states and traveling-wave solutions of the generalized Constantin--Lax--Majda equation. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3155-3170. doi: 10.3934/dcds.2014.34.3155 |
[9] |
Wan-Tong Li, Guo Lin, Cong Ma, Fei-Ying Yang. Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 467-484. doi: 10.3934/dcdsb.2014.19.467 |
[10] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[11] |
Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057 |
[12] |
Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057 |
[13] |
Guo Lin, Wan-Tong Li, Mingju Ma. Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 393-414. doi: 10.3934/dcdsb.2010.13.393 |
[14] |
Weijiu Liu. Asymptotic behavior of solutions of time-delayed Burgers' equation. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 47-56. doi: 10.3934/dcdsb.2002.2.47 |
[15] |
Jérôme Fehrenbach, Jacek Narski, Jiale Hua, Samuel Lemercier, Asja Jelić, Cécile Appert-Rolland, Stéphane Donikian, Julien Pettré, Pierre Degond. Time-delayed follow-the-leader model for pedestrians walking in line. Networks and Heterogeneous Media, 2015, 10 (3) : 579-608. doi: 10.3934/nhm.2015.10.579 |
[16] |
Yijun Lou, Xiao-Qiang Zhao. Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 169-186. doi: 10.3934/dcdsb.2009.12.169 |
[17] |
Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331 |
[18] |
Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1 |
[19] |
Yunfeng Jia, Yi Li, Jianhua Wu. Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4785-4813. doi: 10.3934/dcds.2017206 |
[20] |
Qi An, Weihua Jiang. Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 487-510. doi: 10.3934/dcdsb.2018183 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]