May  2015, 14(3): 941-957. doi: 10.3934/cpaa.2015.14.941

KAM Tori for generalized Benjamin-Ono equation

1. 

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan, 450001, China

Received  July 2014 Revised  December 2014 Published  March 2015

In this paper, we investigate one-dimensional generalized Benjamin-Ono equation, \begin{eqnarray} u_t+\mathcal{H}u_{xx}+u^{4}u_x=0,x\in\mathbb{T}, \end{eqnarray} and prove the existence of quasi-periodic solutions with two frequencies. The proof is based on partial Birkhoff normal form and an unbounded KAM theorem developed by Liu-Yuan[Commun.Math.Phys.307(2011)629-673].
Citation: Dongfeng Yan. KAM Tori for generalized Benjamin-Ono equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 941-957. doi: 10.3934/cpaa.2015.14.941
References:
[1]

P. Baldi, Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type,, \emph{Ann. Inst. H. Poincar Anal. Non Linaire}, 30 (2013), 33.  doi: 10.1016/j.anihpc.2012.06.001.  Google Scholar

[2]

P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation,, \emph{Math. Ann.}, 359 (2014), 471.  doi: 10.1007/s00208-013-1001-7.  Google Scholar

[3]

P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear KdV,, \emph{C. R. Math. Acad. Sci. Paris}, 352 (2014), 603.  doi: 10.1016/j.crma.2014.04.012.  Google Scholar

[4]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth,, \emph{J. Fluid Mech.}, 29 (1967), 559.   Google Scholar

[5]

M. Berti, L. Biasco and M. Procesi, KAM theory for the Hamiltonian derivative wave equations,, \emph{Arch. Ration. Mech. Anal.}, 212 (2014), 905.  doi: 10.1007/s00205-014-0726-0.  Google Scholar

[6]

J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and application to nonlinear pde,, \emph{Int. Math. Res. Notices}, 11 (1994), 475.  doi: 10.1155/S1073792894000516.  Google Scholar

[7]

J. Bourgain, On Melnikov's persistence problem,, \emph{Math. Res. Lett.}, 4 (1997), 445.  doi: 10.4310/MRL.1997.v4.n4.a1.  Google Scholar

[8]

J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations for 2D linear Schrödinger equation,, \emph{Ann. Math.}, 148 (1998), 363.  doi: 10.2307/121001.  Google Scholar

[9]

J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications,, Annals of mathematics studies, (2005).   Google Scholar

[10]

J. Bourgain, On invariant tori of full dimension for 1D periodic NLS,, \emph{J. Funct. Anal.}, 229 (2005), 62.  doi: 10.1016/j.jfa.2004.10.019.  Google Scholar

[11]

L. Chierchia and J. You, KAM tori for 1D nonlinear wave equation with periodic boundary conditions,, \emph{Commun. Math. Phys.}, 211 (2000), 497.  doi: 10.1007/s002200050824.  Google Scholar

[12]

G. Iooss, P. I. Plotnikov and J. F. Toland, Standing waves on an infinitely deep perfect fluid under gravity,, \emph{Arch. Ration. Mech. Anal.}, 177 (2005), 367.  doi: 10.1007/s00205-005-0381-6.  Google Scholar

[13]

J. R. Iorio, On the Cauchy problem for the Benjamin-Ono equation,, \emph{Comm. Partial Differential equations}, 11 (1986), 1031.  doi: 10.1080/03605308608820456.  Google Scholar

[14]

T. Kappler and J. Pöschel, KdV $&$ KAM,, Springer-Verlag, (2003).  doi: 10.1007/978-3-662-08054-2.  Google Scholar

[15]

C. E. Kenig, G. Ponce and L. Vega, On the generalized Benjamin-Ono equations,, \emph{Trans. Amer. Math. Soc.}, 342 (1994), 155.  doi: 10.2307/2154688.  Google Scholar

[16]

S. B. Kuksin, Hamiltonian perturbation of infinite-dimensional linear system with an imaginary spectrum,, \emph{Funkt. Anal. Prilozh.}, 21 (1987), 22.   Google Scholar

[17]

S. B. Kuksin, Perturbation of quasiperiodic solutions of infinite-dimensional Hamiltonian systems,, \emph{Izv. Akad. Nauk SSSR, 52 (1989), 41.   Google Scholar

[18]

S. B. Kuksin, Nearly Integrable Infinite-dimensional Hamiltonian Systems,, Springer-Verlag, (1993).   Google Scholar

[19]

S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation,, \emph{Ann. of Math.}, 143 (1996), 149.  doi: 10.2307/2118656.  Google Scholar

[20]

S. B. Kuksin, On small denominators equations with large variable coefficients,, \emph{J. Appl. Math. Phys.}, 48 (1997), 262.  doi: 10.1007/PL00001476.  Google Scholar

[21]

S. B. Kuksin, A KAM theorem for equations of the Korteweg-de Vries type,, \emph{Rev. Math-Math Phys.}, 10 (1998), 1.   Google Scholar

[22]

S. B. Kuksin, Analysis of Hamiltonian PDEs,, Oxford Univ. Press, (2000).   Google Scholar

[23]

J. Liu and X. Yuan, Spectrum for quantum Duffing oscillator and small-divisor equation with large variable coefficient,, \emph{Commun. Pure Appl. Math.}, 63 (2010), 1145.  doi: 10.1002/cpa.20314.  Google Scholar

[24]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations,, \emph{Commun. Math. Phys.}, 307 (2011), 629.  doi: 10.1007/s00220-011-1353-3.  Google Scholar

[25]

J. Liu and X. Yuan, KAM for the derivative nonliear Schrödinger equation with periodic boundary conditions,, \emph{Journal of Differential Equations}, 256 (2014), 1627.  doi: 10.1016/j.jde.2013.11.007.  Google Scholar

[26]

L. Mi, Quasi-periodic solutions of derivative nonlinear Schrödinger equations with a given potential,, \emph{Journal of Mathematical Analysis and Applications}, 390 (2012), 335.  doi: 10.1016/j.jmaa.2012.01.046.  Google Scholar

[27]

L. Mi and K. Zhang, Invariant tori for Benjamin-Ono equation with unbounded quasi-periodically forced perturbation,, \emph{Discrete and Continuous Dynamical Systems-Series A}, 34 (2014), 689.  doi: 10.3934/dcds.2014.34.689.  Google Scholar

[28]

L. Molinet and F. Ribaud, Well-posedness results for the generalized Benjamin-Ono equation with small initial data,, \emph{J. Math. Pures Appl.}, 83 (2004), 277.  doi: 10.1016/j.matpur.2003.11.005.  Google Scholar

[29]

H. Ono, Algebraic solitary waves in stratified fluids,, \emph{Journal of the Physical Society of Japan}, 39 (1975), 1082.   Google Scholar

[30]

J. Pöschel, A KAM theorem for some nonlinear PDEs,, \emph{Ann. Scuola Norm. Sup. Pisacl. Sci.}, 23 (1996), 119.   Google Scholar

[31]

J. Pöschel, Quasi-periodic solutions for nonlinear wave equations,, \emph{Comm. Math. Helv.}, 71 (1996), 269.  doi: 10.1007/BF02566420.  Google Scholar

[32]

T. Tao, Global well-posedness of the Benjamin-Ono equation in H1(R),, \emph{J. Hyperbolic Differ. Equ.}, 1 (2004), 27.  doi: 10.1142/S0219891604000032.  Google Scholar

[33]

C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equation via KAM theory,, \emph{Commun. Math. Phys.}, 127 (1990), 479.   Google Scholar

[34]

X. Yuan and K. Zhang, A reduction theorem for time dependent Schrödinger operator with finite differentiable unbounded perturbation,, \emph{J. Math. Phys.}, 54 (2013).  doi: 10.1063/1.4803852.  Google Scholar

[35]

J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differential equations,, \emph{Nonlinearity}, 24 (2011), 1189.  doi: 10.1088/0951-7715/24/4/010.  Google Scholar

show all references

References:
[1]

P. Baldi, Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type,, \emph{Ann. Inst. H. Poincar Anal. Non Linaire}, 30 (2013), 33.  doi: 10.1016/j.anihpc.2012.06.001.  Google Scholar

[2]

P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation,, \emph{Math. Ann.}, 359 (2014), 471.  doi: 10.1007/s00208-013-1001-7.  Google Scholar

[3]

P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear KdV,, \emph{C. R. Math. Acad. Sci. Paris}, 352 (2014), 603.  doi: 10.1016/j.crma.2014.04.012.  Google Scholar

[4]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth,, \emph{J. Fluid Mech.}, 29 (1967), 559.   Google Scholar

[5]

M. Berti, L. Biasco and M. Procesi, KAM theory for the Hamiltonian derivative wave equations,, \emph{Arch. Ration. Mech. Anal.}, 212 (2014), 905.  doi: 10.1007/s00205-014-0726-0.  Google Scholar

[6]

J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and application to nonlinear pde,, \emph{Int. Math. Res. Notices}, 11 (1994), 475.  doi: 10.1155/S1073792894000516.  Google Scholar

[7]

J. Bourgain, On Melnikov's persistence problem,, \emph{Math. Res. Lett.}, 4 (1997), 445.  doi: 10.4310/MRL.1997.v4.n4.a1.  Google Scholar

[8]

J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations for 2D linear Schrödinger equation,, \emph{Ann. Math.}, 148 (1998), 363.  doi: 10.2307/121001.  Google Scholar

[9]

J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications,, Annals of mathematics studies, (2005).   Google Scholar

[10]

J. Bourgain, On invariant tori of full dimension for 1D periodic NLS,, \emph{J. Funct. Anal.}, 229 (2005), 62.  doi: 10.1016/j.jfa.2004.10.019.  Google Scholar

[11]

L. Chierchia and J. You, KAM tori for 1D nonlinear wave equation with periodic boundary conditions,, \emph{Commun. Math. Phys.}, 211 (2000), 497.  doi: 10.1007/s002200050824.  Google Scholar

[12]

G. Iooss, P. I. Plotnikov and J. F. Toland, Standing waves on an infinitely deep perfect fluid under gravity,, \emph{Arch. Ration. Mech. Anal.}, 177 (2005), 367.  doi: 10.1007/s00205-005-0381-6.  Google Scholar

[13]

J. R. Iorio, On the Cauchy problem for the Benjamin-Ono equation,, \emph{Comm. Partial Differential equations}, 11 (1986), 1031.  doi: 10.1080/03605308608820456.  Google Scholar

[14]

T. Kappler and J. Pöschel, KdV $&$ KAM,, Springer-Verlag, (2003).  doi: 10.1007/978-3-662-08054-2.  Google Scholar

[15]

C. E. Kenig, G. Ponce and L. Vega, On the generalized Benjamin-Ono equations,, \emph{Trans. Amer. Math. Soc.}, 342 (1994), 155.  doi: 10.2307/2154688.  Google Scholar

[16]

S. B. Kuksin, Hamiltonian perturbation of infinite-dimensional linear system with an imaginary spectrum,, \emph{Funkt. Anal. Prilozh.}, 21 (1987), 22.   Google Scholar

[17]

S. B. Kuksin, Perturbation of quasiperiodic solutions of infinite-dimensional Hamiltonian systems,, \emph{Izv. Akad. Nauk SSSR, 52 (1989), 41.   Google Scholar

[18]

S. B. Kuksin, Nearly Integrable Infinite-dimensional Hamiltonian Systems,, Springer-Verlag, (1993).   Google Scholar

[19]

S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation,, \emph{Ann. of Math.}, 143 (1996), 149.  doi: 10.2307/2118656.  Google Scholar

[20]

S. B. Kuksin, On small denominators equations with large variable coefficients,, \emph{J. Appl. Math. Phys.}, 48 (1997), 262.  doi: 10.1007/PL00001476.  Google Scholar

[21]

S. B. Kuksin, A KAM theorem for equations of the Korteweg-de Vries type,, \emph{Rev. Math-Math Phys.}, 10 (1998), 1.   Google Scholar

[22]

S. B. Kuksin, Analysis of Hamiltonian PDEs,, Oxford Univ. Press, (2000).   Google Scholar

[23]

J. Liu and X. Yuan, Spectrum for quantum Duffing oscillator and small-divisor equation with large variable coefficient,, \emph{Commun. Pure Appl. Math.}, 63 (2010), 1145.  doi: 10.1002/cpa.20314.  Google Scholar

[24]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations,, \emph{Commun. Math. Phys.}, 307 (2011), 629.  doi: 10.1007/s00220-011-1353-3.  Google Scholar

[25]

J. Liu and X. Yuan, KAM for the derivative nonliear Schrödinger equation with periodic boundary conditions,, \emph{Journal of Differential Equations}, 256 (2014), 1627.  doi: 10.1016/j.jde.2013.11.007.  Google Scholar

[26]

L. Mi, Quasi-periodic solutions of derivative nonlinear Schrödinger equations with a given potential,, \emph{Journal of Mathematical Analysis and Applications}, 390 (2012), 335.  doi: 10.1016/j.jmaa.2012.01.046.  Google Scholar

[27]

L. Mi and K. Zhang, Invariant tori for Benjamin-Ono equation with unbounded quasi-periodically forced perturbation,, \emph{Discrete and Continuous Dynamical Systems-Series A}, 34 (2014), 689.  doi: 10.3934/dcds.2014.34.689.  Google Scholar

[28]

L. Molinet and F. Ribaud, Well-posedness results for the generalized Benjamin-Ono equation with small initial data,, \emph{J. Math. Pures Appl.}, 83 (2004), 277.  doi: 10.1016/j.matpur.2003.11.005.  Google Scholar

[29]

H. Ono, Algebraic solitary waves in stratified fluids,, \emph{Journal of the Physical Society of Japan}, 39 (1975), 1082.   Google Scholar

[30]

J. Pöschel, A KAM theorem for some nonlinear PDEs,, \emph{Ann. Scuola Norm. Sup. Pisacl. Sci.}, 23 (1996), 119.   Google Scholar

[31]

J. Pöschel, Quasi-periodic solutions for nonlinear wave equations,, \emph{Comm. Math. Helv.}, 71 (1996), 269.  doi: 10.1007/BF02566420.  Google Scholar

[32]

T. Tao, Global well-posedness of the Benjamin-Ono equation in H1(R),, \emph{J. Hyperbolic Differ. Equ.}, 1 (2004), 27.  doi: 10.1142/S0219891604000032.  Google Scholar

[33]

C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equation via KAM theory,, \emph{Commun. Math. Phys.}, 127 (1990), 479.   Google Scholar

[34]

X. Yuan and K. Zhang, A reduction theorem for time dependent Schrödinger operator with finite differentiable unbounded perturbation,, \emph{J. Math. Phys.}, 54 (2013).  doi: 10.1063/1.4803852.  Google Scholar

[35]

J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differential equations,, \emph{Nonlinearity}, 24 (2011), 1189.  doi: 10.1088/0951-7715/24/4/010.  Google Scholar

[1]

Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2141-2160. doi: 10.3934/dcds.2017092

[2]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[3]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[4]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[5]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[6]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[7]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[8]

Àlex Haro, Rafael de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1261-1300. doi: 10.3934/dcdsb.2006.6.1261

[9]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[10]

Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615

[11]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[12]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

[13]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171

[14]

Olga Bernardi, Matteo Dalla Riva. Analytic dependence on parameters for Evans' approximated Weak KAM solutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4625-4636. doi: 10.3934/dcds.2017199

[15]

Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9

[16]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[17]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[18]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[19]

Jibin Li, Yi Zhang. Exact solitary wave and quasi-periodic wave solutions for four fifth-order nonlinear wave equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 623-631. doi: 10.3934/dcdsb.2010.13.623

[20]

Hongzi Cong, Jianjun Liu, Xiaoping Yuan. Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 579-600. doi: 10.3934/dcdss.2010.3.579

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]