Advanced Search
Article Contents
Article Contents

KAM Tori for generalized Benjamin-Ono equation

Abstract Related Papers Cited by
  • In this paper, we investigate one-dimensional generalized Benjamin-Ono equation, \begin{eqnarray} u_t+\mathcal{H}u_{xx}+u^{4}u_x=0,x\in\mathbb{T}, \end{eqnarray} and prove the existence of quasi-periodic solutions with two frequencies. The proof is based on partial Birkhoff normal form and an unbounded KAM theorem developed by Liu-Yuan[Commun.Math.Phys.307(2011)629-673].
    Mathematics Subject Classification: Primary: O175.14, O175.29.


    \begin{equation} \\ \end{equation}
  • [1]

    P. Baldi, Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type, Ann. Inst. H. Poincar Anal. Non Linaire, 30 (2013), 33-77.doi: 10.1016/j.anihpc.2012.06.001.


    P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., 359 (2014), 471-536.doi: 10.1007/s00208-013-1001-7.


    P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear KdV, C. R. Math. Acad. Sci. Paris, 352 (2014), 603-607.doi: 10.1016/j.crma.2014.04.012.


    T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592.


    M. Berti, L. Biasco and M. Procesi, KAM theory for the Hamiltonian derivative wave equations, Arch. Ration. Mech. Anal., 212 (2014), 905-955.doi: 10.1007/s00205-014-0726-0.


    J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and application to nonlinear pde, Int. Math. Res. Notices, 11 (1994), 475-497.doi: 10.1155/S1073792894000516.


    J. Bourgain, On Melnikov's persistence problem, Math. Res. Lett., 4 (1997), 445-458.doi: 10.4310/MRL.1997.v4.n4.a1.


    J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations for 2D linear Schrödinger equation, Ann. Math., 148 (1998), 363-439.doi: 10.2307/121001.


    J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications, Annals of mathematics studies, Princeton University Press, 2005.


    J. Bourgain, On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal., 229 (2005), 62-94.doi: 10.1016/j.jfa.2004.10.019.


    L. Chierchia and J. You, KAM tori for 1D nonlinear wave equation with periodic boundary conditions, Commun. Math. Phys., 211 (2000), 497-525.doi: 10.1007/s002200050824.


    G. Iooss, P. I. Plotnikov and J. F. Toland, Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal., 177 (2005), 367-478.doi: 10.1007/s00205-005-0381-6.


    J. R. Iorio, On the Cauchy problem for the Benjamin-Ono equation, Comm. Partial Differential equations, 11 (1986), 1031-1081.doi: 10.1080/03605308608820456.


    T. Kappler and J. Pöschel, KdV $&$ KAM, Springer-Verlag,Berlin,Heidelberg, 2003.doi: 10.1007/978-3-662-08054-2.


    C. E. Kenig, G. Ponce and L. Vega, On the generalized Benjamin-Ono equations, Trans. Amer. Math. Soc., 342 (1994), 155-172.doi: 10.2307/2154688.


    S. B. Kuksin, Hamiltonian perturbation of infinite-dimensional linear system with an imaginary spectrum, Funkt. Anal. Prilozh., 21 (1987), 22-37. [English translation in Funct. Anal. Appl., 21(1987), 192-205.]


    S. B. Kuksin, Perturbation of quasiperiodic solutions of infinite-dimensional Hamiltonian systems, Izv. Akad. Nauk SSSR, ser. Mat., 52 (1989), 41-63. [English translation in Math. USSR Izv., 32 (1989), 39-62.]


    S. B. Kuksin, Nearly Integrable Infinite-dimensional Hamiltonian Systems, Springer-Verlag, Berlin, 1993.


    S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 143 (1996), 149-179.doi: 10.2307/2118656.


    S. B. Kuksin, On small denominators equations with large variable coefficients, J. Appl. Math. Phys., 48(1997), 262-271.doi: 10.1007/PL00001476.


    S. B. Kuksin, A KAM theorem for equations of the Korteweg-de Vries type, Rev. Math-Math Phys., 10 (1998), 1-64.


    S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford Univ. Press,Oxford, 2000.


    J. Liu and X. Yuan, Spectrum for quantum Duffing oscillator and small-divisor equation with large variable coefficient, Commun. Pure Appl. Math., 63 (2010), 1145-1172.doi: 10.1002/cpa.20314.


    J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., 307 (2011), 629-673.doi: 10.1007/s00220-011-1353-3.


    J. Liu and X. Yuan, KAM for the derivative nonliear Schrödinger equation with periodic boundary conditions, Journal of Differential Equations, 256 (2014), 1627-1652.doi: 10.1016/j.jde.2013.11.007.


    L. Mi, Quasi-periodic solutions of derivative nonlinear Schrödinger equations with a given potential, Journal of Mathematical Analysis and Applications, 390 (2012), 335-354.doi: 10.1016/j.jmaa.2012.01.046.


    L. Mi and K. Zhang, Invariant tori for Benjamin-Ono equation with unbounded quasi-periodically forced perturbation, Discrete and Continuous Dynamical Systems-Series A, 34 (2014), 689-707.doi: 10.3934/dcds.2014.34.689.


    L. Molinet and F. Ribaud, Well-posedness results for the generalized Benjamin-Ono equation with small initial data, J. Math. Pures Appl., 83 (2004), 277-311.doi: 10.1016/j.matpur.2003.11.005.


    H. Ono, Algebraic solitary waves in stratified fluids, Journal of the Physical Society of Japan, 39 (1975), 1082-1091.


    J. Pöschel, A KAM theorem for some nonlinear PDEs, Ann. Scuola Norm. Sup. Pisacl. Sci., 23 (1996), 119-148.


    J. Pöschel, Quasi-periodic solutions for nonlinear wave equations, Comm. Math. Helv., 71 (1996), 269-296.doi: 10.1007/BF02566420.


    T. Tao, Global well-posedness of the Benjamin-Ono equation in H1(R), J. Hyperbolic Differ. Equ., 1 (2004), 27-49.doi: 10.1142/S0219891604000032.


    C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equation via KAM theory, Commun. Math. Phys., 127 (1990), 479-528.


    X. Yuan and K. Zhang, A reduction theorem for time dependent Schrödinger operator with finite differentiable unbounded perturbation, J. Math. Phys., 54 (2013), 052701.doi: 10.1063/1.4803852.


    J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differential equations, Nonlinearity, 24 (2011), 1189-1228.doi: 10.1088/0951-7715/24/4/010.

  • 加载中

Article Metrics

HTML views() PDF downloads(79) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint