May  2015, 14(3): 959-968. doi: 10.3934/cpaa.2015.14.959

On the variational $p$-capacity problem in the plane

1. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C 5S7

Received  July 2014 Revised  December 2014 Published  March 2015

Under $1 < p \leq 2$, this note presents some new optimal isoperimetric type properties of the variational $p$-capacitary potentials on convex plane rings.
Citation: Jie Xiao. On the variational $p$-capacity problem in the plane. Communications on Pure & Applied Analysis, 2015, 14 (3) : 959-968. doi: 10.3934/cpaa.2015.14.959
References:
[1]

G. Alessandrini, Isoperimetric inequalities for the length of level lines of solutions of quasilinear capacity problems in the plane,, Z. Angew. Math. Phys., 40 (1989), 920.  doi: 10.1007/BF00945812.  Google Scholar

[2]

V. Andrievskii, W. Hasen and N. Nadirashvilli, Isoperimetric inequalities for capacities in the plane,, Math. Ann., 292 (1992), 191.  doi: 10.1007/BF01444617.  Google Scholar

[3]

R. W. Barnard, K. Pearce and A. Y. Solynin, An isoperimetric inequality for logarithmic capacity,, Ann. Acad. Sci. Fenn. Math., 27 (2002), 419.   Google Scholar

[4]

D. Betsakos, Geometric versions of Schwarz's lemma for quasiregular mappings,, Proc. Amer. Math. Soc., 139 (2010), 1397.  doi: 10.1090/S0002-9939-2010-10604-4.  Google Scholar

[5]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, CRC Press, (1992).   Google Scholar

[6]

M. Flucher, Variational Problems with Concentration,, Birkhäuser, (1999).  doi: 10.1007/978-3-0348-8687-1.  Google Scholar

[7]

L. E. Fraenkel, A lower bound for electrostatic capacity in the plane,, Proc. Royal Soc. Edin., 88 (1981), 267.  doi: 10.1017/S0308210500020114.  Google Scholar

[8]

W. Hansen and N. Nadirashvili, Isoperimetric inequalities in potential theory,, Potential Anal., 3 (1994), 1.  doi: 10.1007/BF01047833.  Google Scholar

[9]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Dover Publications, (2006).   Google Scholar

[10]

A. Henrot and H. Shahgholian, Existence of classical solutions to a free boundary problem for the $p$-Laplace operator: I. the exterior convex case,, J. Reine Angew. Math., 521 (2000), 85.  doi: 10.1515/crll.2000.031.  Google Scholar

[11]

P. Laurence, On the convexity of geometric functionals of level for solutions of certain elliptic partial differential equations,, Z. Angew. Math. Phys., 40 (1989), 258.  doi: 10.1007/BF00945002.  Google Scholar

[12]

J. Lewis, Capacitary functions in convex rings,, Arch. Rational Mech. Anal., 66 (1977), 201.   Google Scholar

[13]

J. Lewis, Applications of Boundary Harnack Inequalities for $p$ Harmonic Functions and Related Topics,, Regularity estimates for nonlinear elliptic and parabolic problems, 2045 (2012), 1.  doi: 10.1007/978-3-642-27145-8_1.  Google Scholar

[14]

M. Longinetti, Some isoperimetric inequalities for the level curves of capacity and Green's functions on convex plane domains,, SIAM J. Math. Anal., 19 (1988), 377.  doi: 10.1137/0519028.  Google Scholar

[15]

V. Maz'ya, Conductor and capacitary inequalities for functions on topological spaces and their applications to Sobolev-type imbeddings,, J. Funct. Anal., 224 (2005), 408.  doi: 10.1016/j.jfa.2004.09.009.  Google Scholar

[16]

V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations,, 2nd, (2011).  doi: 10.1007/978-3-642-15564-2.  Google Scholar

[17]

G. A. Philippin and L. E. Payne, On the conformal capacity problem,, Symposia Mathematica, (1988), 119.   Google Scholar

[18]

G. Pólya, Estimating electrostatic capacity,, Amer. Math. Monthly, 54 (1947), 201.   Google Scholar

[19]

T. Ransford, Potential Theory in the Complex Plane,, London Math. Soc. Student Texts 28, 28 (1995).  doi: 10.1017/CBO9780511623776.  Google Scholar

[20]

A. S. Romanov, Capacity relations in a flat quadrilateral,, Sib. Math. J., 49 (2008), 709.  doi: 10.1007/s11202-008-0068-y.  Google Scholar

[21]

J. Sarvas, Symmetrization of condensers in $n$-space,, Ann. Acad. Sci. Fenn. Ser. AI, 522 (1972).   Google Scholar

[22]

D. Smets and J. Schaftingen, Desingularization of vortices for the Euler equation,, Arch. Rational Mech. Anal., 198 (2010), 869.  doi: 10.1007/s00205-010-0293-y.  Google Scholar

[23]

A. Y. Solynin and V. A. Zalgaller, An isoperimetric inequality for logarithmic capacity of polygons,, Ann. Math., 159 (2004), 277.  doi: 10.4007/annals.2004.159.277.  Google Scholar

[24]

J. Xiao, A maximum problem of S.-T. Yau for variational capacity,, , ().   Google Scholar

show all references

References:
[1]

G. Alessandrini, Isoperimetric inequalities for the length of level lines of solutions of quasilinear capacity problems in the plane,, Z. Angew. Math. Phys., 40 (1989), 920.  doi: 10.1007/BF00945812.  Google Scholar

[2]

V. Andrievskii, W. Hasen and N. Nadirashvilli, Isoperimetric inequalities for capacities in the plane,, Math. Ann., 292 (1992), 191.  doi: 10.1007/BF01444617.  Google Scholar

[3]

R. W. Barnard, K. Pearce and A. Y. Solynin, An isoperimetric inequality for logarithmic capacity,, Ann. Acad. Sci. Fenn. Math., 27 (2002), 419.   Google Scholar

[4]

D. Betsakos, Geometric versions of Schwarz's lemma for quasiregular mappings,, Proc. Amer. Math. Soc., 139 (2010), 1397.  doi: 10.1090/S0002-9939-2010-10604-4.  Google Scholar

[5]

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, CRC Press, (1992).   Google Scholar

[6]

M. Flucher, Variational Problems with Concentration,, Birkhäuser, (1999).  doi: 10.1007/978-3-0348-8687-1.  Google Scholar

[7]

L. E. Fraenkel, A lower bound for electrostatic capacity in the plane,, Proc. Royal Soc. Edin., 88 (1981), 267.  doi: 10.1017/S0308210500020114.  Google Scholar

[8]

W. Hansen and N. Nadirashvili, Isoperimetric inequalities in potential theory,, Potential Anal., 3 (1994), 1.  doi: 10.1007/BF01047833.  Google Scholar

[9]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Dover Publications, (2006).   Google Scholar

[10]

A. Henrot and H. Shahgholian, Existence of classical solutions to a free boundary problem for the $p$-Laplace operator: I. the exterior convex case,, J. Reine Angew. Math., 521 (2000), 85.  doi: 10.1515/crll.2000.031.  Google Scholar

[11]

P. Laurence, On the convexity of geometric functionals of level for solutions of certain elliptic partial differential equations,, Z. Angew. Math. Phys., 40 (1989), 258.  doi: 10.1007/BF00945002.  Google Scholar

[12]

J. Lewis, Capacitary functions in convex rings,, Arch. Rational Mech. Anal., 66 (1977), 201.   Google Scholar

[13]

J. Lewis, Applications of Boundary Harnack Inequalities for $p$ Harmonic Functions and Related Topics,, Regularity estimates for nonlinear elliptic and parabolic problems, 2045 (2012), 1.  doi: 10.1007/978-3-642-27145-8_1.  Google Scholar

[14]

M. Longinetti, Some isoperimetric inequalities for the level curves of capacity and Green's functions on convex plane domains,, SIAM J. Math. Anal., 19 (1988), 377.  doi: 10.1137/0519028.  Google Scholar

[15]

V. Maz'ya, Conductor and capacitary inequalities for functions on topological spaces and their applications to Sobolev-type imbeddings,, J. Funct. Anal., 224 (2005), 408.  doi: 10.1016/j.jfa.2004.09.009.  Google Scholar

[16]

V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations,, 2nd, (2011).  doi: 10.1007/978-3-642-15564-2.  Google Scholar

[17]

G. A. Philippin and L. E. Payne, On the conformal capacity problem,, Symposia Mathematica, (1988), 119.   Google Scholar

[18]

G. Pólya, Estimating electrostatic capacity,, Amer. Math. Monthly, 54 (1947), 201.   Google Scholar

[19]

T. Ransford, Potential Theory in the Complex Plane,, London Math. Soc. Student Texts 28, 28 (1995).  doi: 10.1017/CBO9780511623776.  Google Scholar

[20]

A. S. Romanov, Capacity relations in a flat quadrilateral,, Sib. Math. J., 49 (2008), 709.  doi: 10.1007/s11202-008-0068-y.  Google Scholar

[21]

J. Sarvas, Symmetrization of condensers in $n$-space,, Ann. Acad. Sci. Fenn. Ser. AI, 522 (1972).   Google Scholar

[22]

D. Smets and J. Schaftingen, Desingularization of vortices for the Euler equation,, Arch. Rational Mech. Anal., 198 (2010), 869.  doi: 10.1007/s00205-010-0293-y.  Google Scholar

[23]

A. Y. Solynin and V. A. Zalgaller, An isoperimetric inequality for logarithmic capacity of polygons,, Ann. Math., 159 (2004), 277.  doi: 10.4007/annals.2004.159.277.  Google Scholar

[24]

J. Xiao, A maximum problem of S.-T. Yau for variational capacity,, , ().   Google Scholar

[1]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

[2]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296

[3]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[4]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[5]

Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094

[6]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[7]

Andreas Kreuml. The anisotropic fractional isoperimetric problem with respect to unconditional unit balls. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020290

[8]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[9]

Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020122

[10]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020394

[11]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[12]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[13]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[14]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[15]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[16]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[17]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[18]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[19]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[20]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020392

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]