May  2015, 14(3): 969-979. doi: 10.3934/cpaa.2015.14.969

Time-dependent singularities in the heat equation

1. 

Department of Mathematics, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan

2. 

Department of Mathematics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551

Received  September 2014 Revised  February 2015 Published  March 2015

We consider solutions of the heat equation with time-dependent singularities. It is shown that a singularity is removable if it is weaker than the order of the fundamental solution of the Laplace equation. Some examples of non-removable singularities are also given, which show the optimality of the condition for removability.
Citation: Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969
References:
[1]

H. Brézis and L. Véron, Removable singularities for some nonlinear elliptic equations,, \emph{Arch. Rational Mech. Anal.}, 75 (): 1.  doi: 10.1007/BF00284616.  Google Scholar

[2]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598. doi: 10.1002/cpa.3160340406.  Google Scholar

[3]

A. Grigor'yan, Heat Kernel and Analysis on Manifolds, American Mathematical Society, Providence, RI, 2009.  Google Scholar

[4]

K. Hirata, Removable singularities of semilinear parabolic equations, Proc. Amer. Math. Soc., 142 (2014), 157-171. doi: 10.1090/S0002-9939-2013-11739-9.  Google Scholar

[5]

S.-Y. Hsu, Removable singularities of semilinear parabolic equations, Adv. Differential Equations, 15 (2010), 137-158.  Google Scholar

[6]

K. M. Hui, Another proof for the removable singularities of the heat equation, Proc. Amer. Math. Soc., 138 (2010), 2397-2402. doi: 10.1090/S0002-9939-10-10352-9.  Google Scholar

[7]

T. Kan and J. Takahashi, On the profile of solutions with time-dependent singularities for the heat equation, Kodai Math. J., 37 (2014), 568-585. doi: 10.2996/kmj/1414674609.  Google Scholar

[8]

P.-L. Lions, Isolated singularities in semilinear problems, J. Differential Equations, 38 (1980), 441-450. doi: 10.1016/0022-0396(80)90018-2.  Google Scholar

[9]

S. Sato and E. Yanagida, Solutions with moving singularities for a semilinear parabolic equation, J. Differential Equations, 246 (2009), 724-748. doi: 10.1016/j.jde.2008.09.004.  Google Scholar

[10]

L. Véron, Singular solutions of some nonlinear elliptic equations, Nonlinear Anal., 5 (1981), 225-242. doi: 10.1016/0362-546X(81)90028-6.  Google Scholar

[11]

L. Véron, Singularities of Solutions of Second Order Quasilinear Equations, Longman, Harlow, 1996.  Google Scholar

show all references

References:
[1]

H. Brézis and L. Véron, Removable singularities for some nonlinear elliptic equations,, \emph{Arch. Rational Mech. Anal.}, 75 (): 1.  doi: 10.1007/BF00284616.  Google Scholar

[2]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598. doi: 10.1002/cpa.3160340406.  Google Scholar

[3]

A. Grigor'yan, Heat Kernel and Analysis on Manifolds, American Mathematical Society, Providence, RI, 2009.  Google Scholar

[4]

K. Hirata, Removable singularities of semilinear parabolic equations, Proc. Amer. Math. Soc., 142 (2014), 157-171. doi: 10.1090/S0002-9939-2013-11739-9.  Google Scholar

[5]

S.-Y. Hsu, Removable singularities of semilinear parabolic equations, Adv. Differential Equations, 15 (2010), 137-158.  Google Scholar

[6]

K. M. Hui, Another proof for the removable singularities of the heat equation, Proc. Amer. Math. Soc., 138 (2010), 2397-2402. doi: 10.1090/S0002-9939-10-10352-9.  Google Scholar

[7]

T. Kan and J. Takahashi, On the profile of solutions with time-dependent singularities for the heat equation, Kodai Math. J., 37 (2014), 568-585. doi: 10.2996/kmj/1414674609.  Google Scholar

[8]

P.-L. Lions, Isolated singularities in semilinear problems, J. Differential Equations, 38 (1980), 441-450. doi: 10.1016/0022-0396(80)90018-2.  Google Scholar

[9]

S. Sato and E. Yanagida, Solutions with moving singularities for a semilinear parabolic equation, J. Differential Equations, 246 (2009), 724-748. doi: 10.1016/j.jde.2008.09.004.  Google Scholar

[10]

L. Véron, Singular solutions of some nonlinear elliptic equations, Nonlinear Anal., 5 (1981), 225-242. doi: 10.1016/0362-546X(81)90028-6.  Google Scholar

[11]

L. Véron, Singularities of Solutions of Second Order Quasilinear Equations, Longman, Harlow, 1996.  Google Scholar

[1]

Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021062

[2]

Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178

[3]

Yavar Kian, Alexander Tetlow. Hölder-stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic Schrödinger equation. Inverse Problems & Imaging, 2020, 14 (5) : 819-839. doi: 10.3934/ipi.2020038

[4]

Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141

[5]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[6]

Zhibo Cheng, Jingli Ren. Periodic and subharmonic solutions for duffing equation with a singularity. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1557-1574. doi: 10.3934/dcds.2012.32.1557

[7]

Jerry Bona, H. Kalisch. Singularity formation in the generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems, 2004, 11 (1) : 27-45. doi: 10.3934/dcds.2004.11.27

[8]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[9]

Chan Liu, Jin Wen, Zhidong Zhang. Reconstruction of the time-dependent source term in a stochastic fractional diffusion equation. Inverse Problems & Imaging, 2020, 14 (6) : 1001-1024. doi: 10.3934/ipi.2020053

[10]

Haixia Li. Lifespan of solutions to a parabolic type Kirchhoff equation with time-dependent nonlinearity. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020088

[11]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[12]

Jungkwon Kim, Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. On Morawetz estimates with time-dependent weights for the Klein-Gordon equation. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6275-6288. doi: 10.3934/dcds.2020279

[13]

Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete & Continuous Dynamical Systems, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705

[14]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Robustness of time-dependent attractors in H1-norm for nonlocal problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1011-1036. doi: 10.3934/dcdsb.2018140

[15]

Veronica Felli, Elsa M. Marchini, Susanna Terracini. On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 91-119. doi: 10.3934/dcds.2008.21.91

[16]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[17]

Gang Tian. Finite-time singularity of Kähler-Ricci flow. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1137-1150. doi: 10.3934/dcds.2010.28.1137

[18]

Juan C. Jara, Felipe Rivero. Asymptotic behaviour for prey-predator systems and logistic equations with unbounded time-dependent coefficients. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4127-4137. doi: 10.3934/dcds.2014.34.4127

[19]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[20]

I. Baldomá, Tere M. Seara. The inner equation for generic analytic unfoldings of the Hopf-zero singularity. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 323-347. doi: 10.3934/dcdsb.2008.10.323

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]