Advanced Search
Article Contents
Article Contents

Average number of lattice points in a disk

Abstract Related Papers Cited by
  • The difference between the number of lattice points in a disk of radius $\sqrt{t}/2\pi$ and the area of the disk $t/4\pi$ is equal to the error in the Weyl asymptotic estimate for the eigenvalue counting function of the Laplacian on the standard flat torus. We give a sharp asymptotic expression for the average value of the difference over the interval $0 \leq t \leq R$. We obtain similar results for families of ellipses. We also obtain relations to the eigenvalue counting function for the Klein bottle and projective plane.
    Mathematics Subject Classification: Primary: 35J05; Secondary: 42B99.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Begué, T. Kalloniatis and R. Strichartz, Harmonic functions and the spectrum of the Laplacian on the Sierpinski carpet, Fractals, 21 (2013), 13500023 (32 pages).doi: 10.1142/S0218348X13500023.


    P. Bleher, On the distribution of the number of lattice points inside a family of convex ovals, Duke Math J., 67, 461-481. doi: 10.1215/S0012-7094-92-06718-4.


    P. Bleher, Distribution of the error term in the Weyl asymptotics for the Laplace operator on a two-dimensional torus and related lattice problems, Duke Math J., 70, 655-682. doi: 10.1215/S0012-7094-93-07015-9.


    M. Huxley, The mean lattice discrepancy, Proc. Edinburg Math. Soc., 38 (1995), 523-531.doi: 10.1017/S0013091500019313.


    H. Iwaniec and E. Kowalski, Analytic Number Theory, AMS Colloq. Publ. vol 53, 2004.


    S. Jayakar and R. Strichartz, Average number of lattice points in a disk, http://www.math.cornell.edu/ sujay/lattice, 2012.


    N. Lebedev, Special Functions and Their Applications, Dover Publications, New York, 1965.


    W. Müller, On the average order of the lattice rest of a convex body, Acta Arith., 80 (1997), 89-100.


    C. Sogge, Hangzhou Lectures on Eigenfunctions of the Laplacian, Princeton Univ. Press, Princeton, 2014.doi: 10.1515/9781400850549.


    E. Stein and R. Shakarchi, Functional Analysis, Princeton Univ. Press, 2011.


    R. Strichartz, Average error for spectral asymptotics on surfaces, Comm. Pure Appl. Analysis, 15 (2016), 9-39.

  • 加载中

Article Metrics

HTML views() PDF downloads(76) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint