• Previous Article
    Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform
  • CPAA Home
  • This Issue
  • Next Article
    Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent
May  2016, 15(3): 1009-1028. doi: 10.3934/cpaa.2016.15.1009

Global regular solutions to two-dimensional thermoviscoelasticity

1. 

Institute of Mathematics and Cryptology, Cybernetics Faculty, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland

2. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw

Received  March 2015 Revised  November 2015 Published  February 2016

A two-dimensional thermoviscoelastic system of Kelvin-Voigt type with strong dependence on temperature is considered. The existence and uniqueness of a global regular solution is proved without small data assumptions. The global existence is proved in two steps. First global a priori estimate is derived applying the theory of anisotropic Sobolev spaces with a mixed norm. Then local existence, proved by the method of successive approximations for a sufficiently small time interval, is extended step by step in time. By two-dimensional solution we mean that all its quantities depend on two space variables only.
Citation: Jerzy Gawinecki, Wojciech M. Zajączkowski. Global regular solutions to two-dimensional thermoviscoelasticity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1009-1028. doi: 10.3934/cpaa.2016.15.1009
References:
[1]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, Integral Representation of Functions and Theorems of Imbeddings, Nauka Moscow, 1975 (in Russian). Google Scholar

[2]

D. Blanchard and O. Guibé, Existence of a solution for nonlinear system in thermoviscoelasticity, Adv. Diff. Equs., 5 (2000), 1221-1252.  Google Scholar

[3]

Y. S. Bugrov, Function spaces with mixed norm, Math. USSR-Izv., 5 (1971), 1145-1167 (in Russian). Google Scholar

[4]

C. M. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity, SIAM J. Math. Anal., 13 (1982), 397-408. doi: 10.1137/0513029.  Google Scholar

[5]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity, Nonlin. Anal., 6 (1982), 435-454. doi: 10.1016/0362-546X(82)90058-X.  Google Scholar

[6]

D. Eck, J. Jarušek and M. Krbec, Unilateral Contact Problems: Variational Methods and Existence Theorems, Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2005. doi: 10.1201/9781420027365.  Google Scholar

[7]

J. A. Gawinecki, Global existence of solutions for non-small data to non-linear spherically symmetric thermoviscoelasticity, Math. Meth. Appl. Sc., 26 (2003), 907-936. doi: 10.1002/mma.406.  Google Scholar

[8]

J. A. Gawinecki and W. M. Zajączkowski, Global non-small data existence of spherically symmetric solutions to nonlinear viscoelasticity in a ball, J. Anal. Appl., 30 (2011), 387-419. doi: 10.4171/ZAA/1441.  Google Scholar

[9]

J. A. Gawinecki and W. M. Zajączkowski, On global existence of solutions of the Neumann problem for spherically symmetric nonlinear viscoelasticity in a ball, Hindawi Publ. Corp. ISRN Math. Analysis, Vol. 2013, article ID268505.  Google Scholar

[10]

J. A. Gawinecki and W. M Zajączkowski,, Global existence of solutions to the nonlinear thermoviscoelasticity system with small data, Top. Meth. Nonlin. Anal., 39 (2012), 263-284.  Google Scholar

[11]

K. K. Golovkin, On equivalent norms for fractional spaces, Amer. Math. Soc. Transl. Ser 2, 81 (1969), 257-280. Google Scholar

[12]

N. V. Krylov, The Calderon-Zygmund theorem and its application for parabolic equations, Algebra i analiz, 13 (2001), 1-25 (in Russian).  Google Scholar

[13]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic type, Nauka Moscow, 1967 (in Russian). Google Scholar

[14]

J. L. Lions and E. Magnes, Problémes aux limites non homogénes et applicationes, Vol. 1, Dunod, Paris, 1968.  Google Scholar

[15]

I. Pawłow and W. M. Zajączkowski, Global regular solutions to a Kelvin-Voigt type thermoviscoelastic system, SIAM J. Math. Anal., 45 (2013), 1997-2045. doi: 10.1137/110859026.  Google Scholar

[16]

I. Pawłow and W. M. Zajączkowski, Unique solvability of a nonlinear termoviscoelasticity system in Sobolev space with a mixed norm, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 441-466. doi: 10.3934/dcdss.2011.4.441.  Google Scholar

[17]

R. Rossi and T. Roubíček, Thermodynamics and analysis of rate-independent adhesive contact at small strains, Nonlin. Anal., 74 (2011), 3159-3190. doi: 10.1016/j.na.2011.01.031.  Google Scholar

[18]

T. Roubíček, Termoviscoelasticity at small strains with $L^1$-data, Quart. Appl. Math., 67 (2009), 47-71. doi: 10.1090/S0033-569X-09-01094-3.  Google Scholar

[19]

T. Roubíček, Thermodynamics of rate-independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297. doi: 10.1137/080729992.  Google Scholar

[20]

T. Roubíček, Modelling of thermodynamics of martensitic transformation in shape memory alloys, Discrete and Continuous Dynamical Systems, Supplement (2007), 892-902.  Google Scholar

[21]

M. Slemrod, Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoviscoelasticity, Arch. Ration. Mech. Anal., 76 (1981), 97-133. doi: 10.1007/BF00251248.  Google Scholar

[22]

V. A. Solonnikov, Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm, Zap. Nauchn. Sem. S. Petersburg. Otdel. Mat. Inst. Steklov (POMI), 288 (2002), 204-231. doi: 10.1023/B:JOTH.0000041480.38912.3a.  Google Scholar

[23]

V. A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general type, Trudy MIAN, 83 (1965), (in Russian).  Google Scholar

[24]

B. D. Coleman, Thermodynamics of materials with memory, Arch. Ration. Mech. Anal., 17 (1964), 1-46.  Google Scholar

show all references

References:
[1]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, Integral Representation of Functions and Theorems of Imbeddings, Nauka Moscow, 1975 (in Russian). Google Scholar

[2]

D. Blanchard and O. Guibé, Existence of a solution for nonlinear system in thermoviscoelasticity, Adv. Diff. Equs., 5 (2000), 1221-1252.  Google Scholar

[3]

Y. S. Bugrov, Function spaces with mixed norm, Math. USSR-Izv., 5 (1971), 1145-1167 (in Russian). Google Scholar

[4]

C. M. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity, SIAM J. Math. Anal., 13 (1982), 397-408. doi: 10.1137/0513029.  Google Scholar

[5]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity, Nonlin. Anal., 6 (1982), 435-454. doi: 10.1016/0362-546X(82)90058-X.  Google Scholar

[6]

D. Eck, J. Jarušek and M. Krbec, Unilateral Contact Problems: Variational Methods and Existence Theorems, Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2005. doi: 10.1201/9781420027365.  Google Scholar

[7]

J. A. Gawinecki, Global existence of solutions for non-small data to non-linear spherically symmetric thermoviscoelasticity, Math. Meth. Appl. Sc., 26 (2003), 907-936. doi: 10.1002/mma.406.  Google Scholar

[8]

J. A. Gawinecki and W. M. Zajączkowski, Global non-small data existence of spherically symmetric solutions to nonlinear viscoelasticity in a ball, J. Anal. Appl., 30 (2011), 387-419. doi: 10.4171/ZAA/1441.  Google Scholar

[9]

J. A. Gawinecki and W. M. Zajączkowski, On global existence of solutions of the Neumann problem for spherically symmetric nonlinear viscoelasticity in a ball, Hindawi Publ. Corp. ISRN Math. Analysis, Vol. 2013, article ID268505.  Google Scholar

[10]

J. A. Gawinecki and W. M Zajączkowski,, Global existence of solutions to the nonlinear thermoviscoelasticity system with small data, Top. Meth. Nonlin. Anal., 39 (2012), 263-284.  Google Scholar

[11]

K. K. Golovkin, On equivalent norms for fractional spaces, Amer. Math. Soc. Transl. Ser 2, 81 (1969), 257-280. Google Scholar

[12]

N. V. Krylov, The Calderon-Zygmund theorem and its application for parabolic equations, Algebra i analiz, 13 (2001), 1-25 (in Russian).  Google Scholar

[13]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic type, Nauka Moscow, 1967 (in Russian). Google Scholar

[14]

J. L. Lions and E. Magnes, Problémes aux limites non homogénes et applicationes, Vol. 1, Dunod, Paris, 1968.  Google Scholar

[15]

I. Pawłow and W. M. Zajączkowski, Global regular solutions to a Kelvin-Voigt type thermoviscoelastic system, SIAM J. Math. Anal., 45 (2013), 1997-2045. doi: 10.1137/110859026.  Google Scholar

[16]

I. Pawłow and W. M. Zajączkowski, Unique solvability of a nonlinear termoviscoelasticity system in Sobolev space with a mixed norm, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 441-466. doi: 10.3934/dcdss.2011.4.441.  Google Scholar

[17]

R. Rossi and T. Roubíček, Thermodynamics and analysis of rate-independent adhesive contact at small strains, Nonlin. Anal., 74 (2011), 3159-3190. doi: 10.1016/j.na.2011.01.031.  Google Scholar

[18]

T. Roubíček, Termoviscoelasticity at small strains with $L^1$-data, Quart. Appl. Math., 67 (2009), 47-71. doi: 10.1090/S0033-569X-09-01094-3.  Google Scholar

[19]

T. Roubíček, Thermodynamics of rate-independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297. doi: 10.1137/080729992.  Google Scholar

[20]

T. Roubíček, Modelling of thermodynamics of martensitic transformation in shape memory alloys, Discrete and Continuous Dynamical Systems, Supplement (2007), 892-902.  Google Scholar

[21]

M. Slemrod, Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoviscoelasticity, Arch. Ration. Mech. Anal., 76 (1981), 97-133. doi: 10.1007/BF00251248.  Google Scholar

[22]

V. A. Solonnikov, Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm, Zap. Nauchn. Sem. S. Petersburg. Otdel. Mat. Inst. Steklov (POMI), 288 (2002), 204-231. doi: 10.1023/B:JOTH.0000041480.38912.3a.  Google Scholar

[23]

V. A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general type, Trudy MIAN, 83 (1965), (in Russian).  Google Scholar

[24]

B. D. Coleman, Thermodynamics of materials with memory, Arch. Ration. Mech. Anal., 17 (1964), 1-46.  Google Scholar

[1]

Miroslav Bulíček, Josef Málek, K. R. Rajagopal. On Kelvin-Voigt model and its generalizations. Evolution Equations & Control Theory, 2012, 1 (1) : 17-42. doi: 10.3934/eect.2012.1.17

[2]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[3]

Manil T. Mohan. On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations. Evolution Equations & Control Theory, 2020, 9 (2) : 301-339. doi: 10.3934/eect.2020007

[4]

Louis Tebou. Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 7117-7136. doi: 10.3934/dcds.2016110

[5]

Ping Li, Pablo Raúl Stinga, José L. Torrea. On weighted mixed-norm Sobolev estimates for some basic parabolic equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 855-882. doi: 10.3934/cpaa.2017041

[6]

Irena Pawłow, Wojciech M. Zajączkowski. Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 441-466. doi: 10.3934/dcdss.2011.4.441

[7]

Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021

[8]

Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247

[9]

Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029

[10]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[11]

Long Huang, Jun Liu, Dachun Yang, Wen Yuan. Real-variable characterizations of new anisotropic mixed-norm Hardy spaces. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3033-3082. doi: 10.3934/cpaa.2020132

[12]

Peter Weidemaier. Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm. Electronic Research Announcements, 2002, 8: 47-51.

[13]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[14]

Frédéric Bernicot, Vjekoslav Kovač. Sobolev norm estimates for a class of bilinear multipliers. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1305-1315. doi: 10.3934/cpaa.2014.13.1305

[15]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[16]

Nobu Kishimoto, Minjie Shan, Yoshio Tsutsumi. Global well-posedness and existence of the global attractor for the Kadomtsev-Petviashvili Ⅱ equation in the anisotropic Sobolev space. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1283-1307. doi: 10.3934/dcds.2020078

[17]

Manil T. Mohan. Global and exponential attractors for the 3D Kelvin-Voigt-Brinkman-Forchheimer equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3393-3436. doi: 10.3934/dcdsb.2020067

[18]

Ferenc Weisz. Dual spaces of mixed-norm martingale Hardy spaces. Communications on Pure & Applied Analysis, 2021, 20 (2) : 681-695. doi: 10.3934/cpaa.2020285

[19]

Yuming Qin, Yang Wang, Xing Su, Jianlin Zhang. Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1563-1581. doi: 10.3934/dcds.2016.36.1563

[20]

Stan Chiriţă. Spatial behavior in the vibrating thermoviscoelastic porous materials. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2027-2038. doi: 10.3934/dcdsb.2014.19.2027

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]