• Previous Article
    Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform
  • CPAA Home
  • This Issue
  • Next Article
    Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent
May  2016, 15(3): 1009-1028. doi: 10.3934/cpaa.2016.15.1009

Global regular solutions to two-dimensional thermoviscoelasticity

1. 

Institute of Mathematics and Cryptology, Cybernetics Faculty, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland

2. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw

Received  March 2015 Revised  November 2015 Published  February 2016

A two-dimensional thermoviscoelastic system of Kelvin-Voigt type with strong dependence on temperature is considered. The existence and uniqueness of a global regular solution is proved without small data assumptions. The global existence is proved in two steps. First global a priori estimate is derived applying the theory of anisotropic Sobolev spaces with a mixed norm. Then local existence, proved by the method of successive approximations for a sufficiently small time interval, is extended step by step in time. By two-dimensional solution we mean that all its quantities depend on two space variables only.
Citation: Jerzy Gawinecki, Wojciech M. Zajączkowski. Global regular solutions to two-dimensional thermoviscoelasticity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1009-1028. doi: 10.3934/cpaa.2016.15.1009
References:
[1]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, Integral Representation of Functions and Theorems of Imbeddings,, Nauka Moscow, (1975).   Google Scholar

[2]

D. Blanchard and O. Guibé, Existence of a solution for nonlinear system in thermoviscoelasticity,, \emph{Adv. Diff. Equs.}, 5 (2000), 1221.   Google Scholar

[3]

Y. S. Bugrov, Function spaces with mixed norm,, \emph{Math. USSR-Izv.}, 5 (1971), 1145.   Google Scholar

[4]

C. M. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity,, \emph{SIAM J. Math. Anal.}, 13 (1982), 397.  doi: 10.1137/0513029.  Google Scholar

[5]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity,, \emph{Nonlin. Anal.}, 6 (1982), 435.  doi: 10.1016/0362-546X(82)90058-X.  Google Scholar

[6]

D. Eck, J. Jarušek and M. Krbec, Unilateral Contact Problems: Variational Methods and Existence Theorems,, Pure and Applied Mathematics, (2005).  doi: 10.1201/9781420027365.  Google Scholar

[7]

J. A. Gawinecki, Global existence of solutions for non-small data to non-linear spherically symmetric thermoviscoelasticity,, \emph{Math. Meth. Appl. Sc.}, 26 (2003), 907.  doi: 10.1002/mma.406.  Google Scholar

[8]

J. A. Gawinecki and W. M. Zajączkowski, Global non-small data existence of spherically symmetric solutions to nonlinear viscoelasticity in a ball,, \emph{J. Anal. Appl.}, 30 (2011), 387.  doi: 10.4171/ZAA/1441.  Google Scholar

[9]

J. A. Gawinecki and W. M. Zajączkowski, On global existence of solutions of the Neumann problem for spherically symmetric nonlinear viscoelasticity in a ball,, \emph{Hindawi Publ. Corp. ISRN Math. Analysis}, (2013).   Google Scholar

[10]

J. A. Gawinecki and W. M Zajączkowski,, Global existence of solutions to the nonlinear thermoviscoelasticity system with small data,, \emph{Top. Meth. Nonlin. Anal.}, 39 (2012), 263.   Google Scholar

[11]

K. K. Golovkin, On equivalent norms for fractional spaces,, \emph{Amer. Math. Soc. Transl. Ser 2}, 81 (1969), 257.   Google Scholar

[12]

N. V. Krylov, The Calderon-Zygmund theorem and its application for parabolic equations,, \emph{Algebra i analiz}, 13 (2001), 1.   Google Scholar

[13]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic type,, Nauka Moscow, (1967).   Google Scholar

[14]

J. L. Lions and E. Magnes, Problémes aux limites non homogénes et applicationes,, Vol. 1, (1968).   Google Scholar

[15]

I. Pawłow and W. M. Zajączkowski, Global regular solutions to a Kelvin-Voigt type thermoviscoelastic system,, \emph{SIAM J. Math. Anal.}, 45 (2013), 1997.  doi: 10.1137/110859026.  Google Scholar

[16]

I. Pawłow and W. M. Zajączkowski, Unique solvability of a nonlinear termoviscoelasticity system in Sobolev space with a mixed norm,, \emph{Discrete Contin. Dyn. Syst. Ser. S}, 4 (2011), 441.  doi: 10.3934/dcdss.2011.4.441.  Google Scholar

[17]

R. Rossi and T. Roubíček, Thermodynamics and analysis of rate-independent adhesive contact at small strains,, \emph{Nonlin. Anal.}, 74 (2011), 3159.  doi: 10.1016/j.na.2011.01.031.  Google Scholar

[18]

T. Roubíček, Termoviscoelasticity at small strains with $L^1$-data,, \emph{Quart. Appl. Math.}, 67 (2009), 47.  doi: 10.1090/S0033-569X-09-01094-3.  Google Scholar

[19]

T. Roubíček, Thermodynamics of rate-independent processes in viscous solids at small strains,, \emph{SIAM J. Math. Anal.}, 42 (2010), 256.  doi: 10.1137/080729992.  Google Scholar

[20]

T. Roubíček, Modelling of thermodynamics of martensitic transformation in shape memory alloys,, \emph{Discrete and Continuous Dynamical Systems}, (2007), 892.   Google Scholar

[21]

M. Slemrod, Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoviscoelasticity,, \emph{Arch. Ration. Mech. Anal.}, 76 (1981), 97.  doi: 10.1007/BF00251248.  Google Scholar

[22]

V. A. Solonnikov, Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm,, \emph{Zap. Nauchn. Sem. S. Petersburg. Otdel. Mat. Inst. Steklov (POMI)}, 288 (2002), 204.  doi: 10.1023/B:JOTH.0000041480.38912.3a.  Google Scholar

[23]

V. A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general type,, \emph{Trudy MIAN}, 83 (1965).   Google Scholar

[24]

B. D. Coleman, Thermodynamics of materials with memory,, \emph{Arch. Ration. Mech. Anal.}, 17 (1964), 1.   Google Scholar

show all references

References:
[1]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, Integral Representation of Functions and Theorems of Imbeddings,, Nauka Moscow, (1975).   Google Scholar

[2]

D. Blanchard and O. Guibé, Existence of a solution for nonlinear system in thermoviscoelasticity,, \emph{Adv. Diff. Equs.}, 5 (2000), 1221.   Google Scholar

[3]

Y. S. Bugrov, Function spaces with mixed norm,, \emph{Math. USSR-Izv.}, 5 (1971), 1145.   Google Scholar

[4]

C. M. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity,, \emph{SIAM J. Math. Anal.}, 13 (1982), 397.  doi: 10.1137/0513029.  Google Scholar

[5]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity,, \emph{Nonlin. Anal.}, 6 (1982), 435.  doi: 10.1016/0362-546X(82)90058-X.  Google Scholar

[6]

D. Eck, J. Jarušek and M. Krbec, Unilateral Contact Problems: Variational Methods and Existence Theorems,, Pure and Applied Mathematics, (2005).  doi: 10.1201/9781420027365.  Google Scholar

[7]

J. A. Gawinecki, Global existence of solutions for non-small data to non-linear spherically symmetric thermoviscoelasticity,, \emph{Math. Meth. Appl. Sc.}, 26 (2003), 907.  doi: 10.1002/mma.406.  Google Scholar

[8]

J. A. Gawinecki and W. M. Zajączkowski, Global non-small data existence of spherically symmetric solutions to nonlinear viscoelasticity in a ball,, \emph{J. Anal. Appl.}, 30 (2011), 387.  doi: 10.4171/ZAA/1441.  Google Scholar

[9]

J. A. Gawinecki and W. M. Zajączkowski, On global existence of solutions of the Neumann problem for spherically symmetric nonlinear viscoelasticity in a ball,, \emph{Hindawi Publ. Corp. ISRN Math. Analysis}, (2013).   Google Scholar

[10]

J. A. Gawinecki and W. M Zajączkowski,, Global existence of solutions to the nonlinear thermoviscoelasticity system with small data,, \emph{Top. Meth. Nonlin. Anal.}, 39 (2012), 263.   Google Scholar

[11]

K. K. Golovkin, On equivalent norms for fractional spaces,, \emph{Amer. Math. Soc. Transl. Ser 2}, 81 (1969), 257.   Google Scholar

[12]

N. V. Krylov, The Calderon-Zygmund theorem and its application for parabolic equations,, \emph{Algebra i analiz}, 13 (2001), 1.   Google Scholar

[13]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic type,, Nauka Moscow, (1967).   Google Scholar

[14]

J. L. Lions and E. Magnes, Problémes aux limites non homogénes et applicationes,, Vol. 1, (1968).   Google Scholar

[15]

I. Pawłow and W. M. Zajączkowski, Global regular solutions to a Kelvin-Voigt type thermoviscoelastic system,, \emph{SIAM J. Math. Anal.}, 45 (2013), 1997.  doi: 10.1137/110859026.  Google Scholar

[16]

I. Pawłow and W. M. Zajączkowski, Unique solvability of a nonlinear termoviscoelasticity system in Sobolev space with a mixed norm,, \emph{Discrete Contin. Dyn. Syst. Ser. S}, 4 (2011), 441.  doi: 10.3934/dcdss.2011.4.441.  Google Scholar

[17]

R. Rossi and T. Roubíček, Thermodynamics and analysis of rate-independent adhesive contact at small strains,, \emph{Nonlin. Anal.}, 74 (2011), 3159.  doi: 10.1016/j.na.2011.01.031.  Google Scholar

[18]

T. Roubíček, Termoviscoelasticity at small strains with $L^1$-data,, \emph{Quart. Appl. Math.}, 67 (2009), 47.  doi: 10.1090/S0033-569X-09-01094-3.  Google Scholar

[19]

T. Roubíček, Thermodynamics of rate-independent processes in viscous solids at small strains,, \emph{SIAM J. Math. Anal.}, 42 (2010), 256.  doi: 10.1137/080729992.  Google Scholar

[20]

T. Roubíček, Modelling of thermodynamics of martensitic transformation in shape memory alloys,, \emph{Discrete and Continuous Dynamical Systems}, (2007), 892.   Google Scholar

[21]

M. Slemrod, Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoviscoelasticity,, \emph{Arch. Ration. Mech. Anal.}, 76 (1981), 97.  doi: 10.1007/BF00251248.  Google Scholar

[22]

V. A. Solonnikov, Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm,, \emph{Zap. Nauchn. Sem. S. Petersburg. Otdel. Mat. Inst. Steklov (POMI)}, 288 (2002), 204.  doi: 10.1023/B:JOTH.0000041480.38912.3a.  Google Scholar

[23]

V. A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general type,, \emph{Trudy MIAN}, 83 (1965).   Google Scholar

[24]

B. D. Coleman, Thermodynamics of materials with memory,, \emph{Arch. Ration. Mech. Anal.}, 17 (1964), 1.   Google Scholar

[1]

Miroslav Bulíček, Josef Málek, K. R. Rajagopal. On Kelvin-Voigt model and its generalizations. Evolution Equations & Control Theory, 2012, 1 (1) : 17-42. doi: 10.3934/eect.2012.1.17

[2]

Manil T. Mohan. On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020007

[3]

Louis Tebou. Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7117-7136. doi: 10.3934/dcds.2016110

[4]

Ping Li, Pablo Raúl Stinga, José L. Torrea. On weighted mixed-norm Sobolev estimates for some basic parabolic equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 855-882. doi: 10.3934/cpaa.2017041

[5]

Irena Pawłow, Wojciech M. Zajączkowski. Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 441-466. doi: 10.3934/dcdss.2011.4.441

[6]

Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021

[7]

Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029

[8]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[9]

Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247

[10]

Peter Weidemaier. Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm. Electronic Research Announcements, 2002, 8: 47-51.

[11]

Frédéric Bernicot, Vjekoslav Kovač. Sobolev norm estimates for a class of bilinear multipliers. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1305-1315. doi: 10.3934/cpaa.2014.13.1305

[12]

Nobu Kishimoto, Minjie Shan, Yoshio Tsutsumi. Global well-posedness and existence of the global attractor for the Kadomtsev-Petviashvili Ⅱ equation in the anisotropic Sobolev space. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1283-1307. doi: 10.3934/dcds.2020078

[13]

Yuming Qin, Yang Wang, Xing Su, Jianlin Zhang. Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1563-1581. doi: 10.3934/dcds.2016.36.1563

[14]

Stan Chiriţă. Spatial behavior in the vibrating thermoviscoelastic porous materials. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2027-2038. doi: 10.3934/dcdsb.2014.19.2027

[15]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[16]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

[17]

Laura Baldelli, Roberta Filippucci. A priori estimates for elliptic problems via Liouville type theorems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020148

[18]

Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053

[19]

Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

[20]

Kotaro Tsugawa. Existence of the global attractor for weakly damped, forced KdV equation on Sobolev spaces of negative index. Communications on Pure & Applied Analysis, 2004, 3 (2) : 301-318. doi: 10.3934/cpaa.2004.3.301

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]