-
Previous Article
Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting
- CPAA Home
- This Issue
-
Next Article
Global regular solutions to two-dimensional thermoviscoelasticity
Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform
1. | Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, South Korea |
References:
[1] |
L. Andersson, On the determination of a function from spherical averages, SIAM Journal on Mathematical Analysis, 19 (1988), 214-232.
doi: 10.1137/0519016. |
[2] |
A. M. Cormack, Representation of a function by its line integrals, with some radiological applications, Journal of Applied Physics, 34 (1963), 2722-2727. |
[3] |
A. M. Cormack, Representation of a function by its line integrals, with some radiological applications. II, Journal of Applied Physics, 35 (1964), 2908-2913. |
[4] |
A. M. Cormack and E. T. Quinto, A Radon transform on spheres through the origin in $\mathbbR^n$ and applications to the Darboux equation, Transactions of the American Mathematical Society, 260 (1980), 575-581.
doi: 10.2307/1998023. |
[5] |
J. Fawcett, Inversion of $n$-dimensional spherical averages, SIAM Journal on Applied Mathematics, 45 (1985), 336-341.
doi: 10.1137/0145018. |
[6] |
D. Finch, M. Haltmeier and Rakesh, Inversion of spherical means and the wave equation in even dimensions, SIAM Journal on Applied Mathematics, 68 (2007), 392-412.
doi: 10.1137/070682137. |
[7] |
D. Finch, S. Patch and Rakesh, Determining a function from its mean values over a family of spheres, SIAM Journal on Mathematical Analysis, 35 (2004), 1213-1240.
doi: 10.1137/S0036141002417814. |
[8] |
D. Finch and Rakesh, Recovering a function from its spherical mean values in two and three dimensions, In Photoacoustic Imaging and Spectroscopy (L. Wang ed.), Optical Science and Engineering. Taylor & Francis, 2009. |
[9] |
S. Gindikin, J. Reeds and L. Shepp, Spherical tomography and spherical integral geometry, In Tomography, Impedance Imaging, and Integral Geometry: 1993 AMS-SIAM Summer Seminar on the Mathematics of Tomography, Impedance Imaging, and Integral Geometry, June 7-18, 1993, Mount Holyoke College, Massachusetts (E. T. Quinto, M. Cheney, P. Kuchment and American Mathematical Society eds.), Lectures in Applied Mathematics Series, pages 83-92. American Mathematical Society, 1994. |
[10] |
M. Haltmeier, Exact reconstruction formula for the spherical mean Radon transform on ellipsoids, Inverse Problems, 30 (2014), 035001.
doi: 10.1088/0266-5611/30/10/105006. |
[11] |
S. Helgason, A duality in integral geometry: some generalizations of the Radon transform, Bulletin of the American Mathematical Society, 70 (1964), 435-446. |
[12] |
H. Hellsten and L. E. Andersson, An inverse method for the processing of synthetic aperture radar data, Inverse Problems, 3 (1987), 111. |
[13] |
F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations, Dover Books on Mathematics Series. Dover Publications, 2004. |
[14] |
L. A. Kunyansky, Explicit inversion formulae for the spherical mean Radon transform, Inverse Problems, 23 (2007), 373.
doi: 10.1088/0266-5611/23/1/021. |
[15] |
L. A. Kunyansky, A series solution and a fast algorithm for the inversion of the spherical mean Radon transform, Inverse Problems, 23 (2007), S11.
doi: 10.1088/0266-5611/23/6/S02. |
[16] |
L. A. Kunyansky, Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries, Inverse Problems and Imaging, 6 (2012), 111-131.
doi: 10.3934/ipi.2012.6.111. |
[17] |
D. Ludwig, The Radon transform on Euclidean space, Communications on Pure and Applied Mathematics, 19 (1966), 49-81. |
[18] |
E. K. Narayanan and Rakesh, Spherical means with centers on a hyperplane in even dimensions, Inverse Problems, 26 (2010), 035014.
doi: 10.1088/0266-5611/26/3/035014. |
[19] |
F. Natterer, The Mathematics of Computerized Tomography, Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, 2001.
doi: 10.1137/1.9780898719284. |
[20] |
F. Natterer and F. Wübbeling, Mathematical methods in image reconstruction, SIAM Monographs on mathematical modeling and computation. SIAM, Society of industrial and applied mathematics, Philadelphia (Pa.), 2001.
doi: 10.1137/1.9780898718324. |
[21] |
M. K. Nguyen and T. T. Truong, Inversion of a new circular-arc Radon transform for Compton scattering tomography, Inverse Problems, 26 (2010), 065005.
doi: 10.1088/0266-5611/26/6/065005. |
[22] |
M. K. Nguyen, G Rigaud and T. T. Truong, A new circular-arc Radon transform and the numerical method for its inversion, In Aip Conference Proceedings, volume 1281, page 1064, 2010. |
[23] |
C. J. Nolan and M. Cheney, Synthetic aperture inversion, Inverse Problems, 18 (2002), 221.
doi: 10.1088/0266-5611/18/1/315. |
[24] |
S. J. Norton, Reconstruction of a reflectivity field from line integrals over circular paths, The Journal of the Acoustical Society of America, 67 (1980), 853-863.
doi: 10.1121/1.384168. |
[25] |
E. T. Quinto, Null spaces and ranges for the classical and spherical Radon transforms, Journal of Mathematical Analysis and Applications, 90 (1982), 408-420.
doi: 10.1016/0022-247X(82)90069-5. |
[26] |
E. T. Quinto, Singular value decompositions and inversion methods for the exterior radon transform and a spherical transform, Journal of Mathematical Analysis and Applications, 95 (1983), 437-448.
doi: 10.1016/0022-247X(83)90118-X. |
[27] |
E. Quinto, Singularities of the X-ray transform and limited data tomography in $\mathbbR^2$ and $\mathbbR^3$, SIAM Journal on Mathematical Analysis, 24 (1993), 1215-1225.
doi: 10.1137/0524069. |
[28] |
N. T. Redding and G. N. Newsam, Inverting the circular Radon transform, DTSO Research Report DTSO-Ru-0211, August 2001. |
[29] |
H. Rhee, A representation of the solutions of the Darboux equation in odd-dimensional spaces, Transactions of the American Mathematical Society, 150 (1970), 491-498. |
[30] |
K. T. Smith, D. C. Solmon and S. L. Wagner, Practical and mathematical aspects of the problem of reconstructing a function from radiographs, Bulletin of the American Mathematical Society, 82 (1977), 1227-1270. |
[31] |
A. E. Yagle, Inversion of spherical means using geometric inversion and Radon transforms, Inverse Problems, 8 (1992), 949. |
[32] |
C. E. Yarman and B. Yazici, Inversion of the circular averages transform using the Funk transform, Inverse Problems, 27 (2011), 065001.
doi: 10.1088/0266-5611/27/6/065001. |
[33] |
L. Zalcman, Offbeat integral geometry, The American Mathematical Monthly, 87 (1980), 161-175.
doi: 10.2307/2321600. |
show all references
References:
[1] |
L. Andersson, On the determination of a function from spherical averages, SIAM Journal on Mathematical Analysis, 19 (1988), 214-232.
doi: 10.1137/0519016. |
[2] |
A. M. Cormack, Representation of a function by its line integrals, with some radiological applications, Journal of Applied Physics, 34 (1963), 2722-2727. |
[3] |
A. M. Cormack, Representation of a function by its line integrals, with some radiological applications. II, Journal of Applied Physics, 35 (1964), 2908-2913. |
[4] |
A. M. Cormack and E. T. Quinto, A Radon transform on spheres through the origin in $\mathbbR^n$ and applications to the Darboux equation, Transactions of the American Mathematical Society, 260 (1980), 575-581.
doi: 10.2307/1998023. |
[5] |
J. Fawcett, Inversion of $n$-dimensional spherical averages, SIAM Journal on Applied Mathematics, 45 (1985), 336-341.
doi: 10.1137/0145018. |
[6] |
D. Finch, M. Haltmeier and Rakesh, Inversion of spherical means and the wave equation in even dimensions, SIAM Journal on Applied Mathematics, 68 (2007), 392-412.
doi: 10.1137/070682137. |
[7] |
D. Finch, S. Patch and Rakesh, Determining a function from its mean values over a family of spheres, SIAM Journal on Mathematical Analysis, 35 (2004), 1213-1240.
doi: 10.1137/S0036141002417814. |
[8] |
D. Finch and Rakesh, Recovering a function from its spherical mean values in two and three dimensions, In Photoacoustic Imaging and Spectroscopy (L. Wang ed.), Optical Science and Engineering. Taylor & Francis, 2009. |
[9] |
S. Gindikin, J. Reeds and L. Shepp, Spherical tomography and spherical integral geometry, In Tomography, Impedance Imaging, and Integral Geometry: 1993 AMS-SIAM Summer Seminar on the Mathematics of Tomography, Impedance Imaging, and Integral Geometry, June 7-18, 1993, Mount Holyoke College, Massachusetts (E. T. Quinto, M. Cheney, P. Kuchment and American Mathematical Society eds.), Lectures in Applied Mathematics Series, pages 83-92. American Mathematical Society, 1994. |
[10] |
M. Haltmeier, Exact reconstruction formula for the spherical mean Radon transform on ellipsoids, Inverse Problems, 30 (2014), 035001.
doi: 10.1088/0266-5611/30/10/105006. |
[11] |
S. Helgason, A duality in integral geometry: some generalizations of the Radon transform, Bulletin of the American Mathematical Society, 70 (1964), 435-446. |
[12] |
H. Hellsten and L. E. Andersson, An inverse method for the processing of synthetic aperture radar data, Inverse Problems, 3 (1987), 111. |
[13] |
F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations, Dover Books on Mathematics Series. Dover Publications, 2004. |
[14] |
L. A. Kunyansky, Explicit inversion formulae for the spherical mean Radon transform, Inverse Problems, 23 (2007), 373.
doi: 10.1088/0266-5611/23/1/021. |
[15] |
L. A. Kunyansky, A series solution and a fast algorithm for the inversion of the spherical mean Radon transform, Inverse Problems, 23 (2007), S11.
doi: 10.1088/0266-5611/23/6/S02. |
[16] |
L. A. Kunyansky, Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries, Inverse Problems and Imaging, 6 (2012), 111-131.
doi: 10.3934/ipi.2012.6.111. |
[17] |
D. Ludwig, The Radon transform on Euclidean space, Communications on Pure and Applied Mathematics, 19 (1966), 49-81. |
[18] |
E. K. Narayanan and Rakesh, Spherical means with centers on a hyperplane in even dimensions, Inverse Problems, 26 (2010), 035014.
doi: 10.1088/0266-5611/26/3/035014. |
[19] |
F. Natterer, The Mathematics of Computerized Tomography, Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, 2001.
doi: 10.1137/1.9780898719284. |
[20] |
F. Natterer and F. Wübbeling, Mathematical methods in image reconstruction, SIAM Monographs on mathematical modeling and computation. SIAM, Society of industrial and applied mathematics, Philadelphia (Pa.), 2001.
doi: 10.1137/1.9780898718324. |
[21] |
M. K. Nguyen and T. T. Truong, Inversion of a new circular-arc Radon transform for Compton scattering tomography, Inverse Problems, 26 (2010), 065005.
doi: 10.1088/0266-5611/26/6/065005. |
[22] |
M. K. Nguyen, G Rigaud and T. T. Truong, A new circular-arc Radon transform and the numerical method for its inversion, In Aip Conference Proceedings, volume 1281, page 1064, 2010. |
[23] |
C. J. Nolan and M. Cheney, Synthetic aperture inversion, Inverse Problems, 18 (2002), 221.
doi: 10.1088/0266-5611/18/1/315. |
[24] |
S. J. Norton, Reconstruction of a reflectivity field from line integrals over circular paths, The Journal of the Acoustical Society of America, 67 (1980), 853-863.
doi: 10.1121/1.384168. |
[25] |
E. T. Quinto, Null spaces and ranges for the classical and spherical Radon transforms, Journal of Mathematical Analysis and Applications, 90 (1982), 408-420.
doi: 10.1016/0022-247X(82)90069-5. |
[26] |
E. T. Quinto, Singular value decompositions and inversion methods for the exterior radon transform and a spherical transform, Journal of Mathematical Analysis and Applications, 95 (1983), 437-448.
doi: 10.1016/0022-247X(83)90118-X. |
[27] |
E. Quinto, Singularities of the X-ray transform and limited data tomography in $\mathbbR^2$ and $\mathbbR^3$, SIAM Journal on Mathematical Analysis, 24 (1993), 1215-1225.
doi: 10.1137/0524069. |
[28] |
N. T. Redding and G. N. Newsam, Inverting the circular Radon transform, DTSO Research Report DTSO-Ru-0211, August 2001. |
[29] |
H. Rhee, A representation of the solutions of the Darboux equation in odd-dimensional spaces, Transactions of the American Mathematical Society, 150 (1970), 491-498. |
[30] |
K. T. Smith, D. C. Solmon and S. L. Wagner, Practical and mathematical aspects of the problem of reconstructing a function from radiographs, Bulletin of the American Mathematical Society, 82 (1977), 1227-1270. |
[31] |
A. E. Yagle, Inversion of spherical means using geometric inversion and Radon transforms, Inverse Problems, 8 (1992), 949. |
[32] |
C. E. Yarman and B. Yazici, Inversion of the circular averages transform using the Funk transform, Inverse Problems, 27 (2011), 065001.
doi: 10.1088/0266-5611/27/6/065001. |
[33] |
L. Zalcman, Offbeat integral geometry, The American Mathematical Monthly, 87 (1980), 161-175.
doi: 10.2307/2321600. |
[1] |
Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021 |
[2] |
Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems and Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649 |
[3] |
Michael Krause, Jan Marcel Hausherr, Walter Krenkel. Computing the fibre orientation from Radon data using local Radon transform. Inverse Problems and Imaging, 2011, 5 (4) : 879-891. doi: 10.3934/ipi.2011.5.879 |
[4] |
Linh V. Nguyen. Spherical mean transform: A PDE approach. Inverse Problems and Imaging, 2013, 7 (1) : 243-252. doi: 10.3934/ipi.2013.7.243 |
[5] |
Mark Agranovsky, David Finch, Peter Kuchment. Range conditions for a spherical mean transform. Inverse Problems and Imaging, 2009, 3 (3) : 373-382. doi: 10.3934/ipi.2009.3.373 |
[6] |
Cécilia Tarpau, Javier Cebeiro, Geneviève Rollet, Maï K. Nguyen, Laurent Dumas. Analytical reconstruction formula with efficient implementation for a modality of Compton scattering tomography with translational geometry. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2021075 |
[7] |
Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems and Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023 |
[8] |
Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems and Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721 |
[9] |
Victor Palamodov. Remarks on the general Funk transform and thermoacoustic tomography. Inverse Problems and Imaging, 2010, 4 (4) : 693-702. doi: 10.3934/ipi.2010.4.693 |
[10] |
Gaik Ambartsoumian, Leonid Kunyansky. Exterior/interior problem for the circular means transform with applications to intravascular imaging. Inverse Problems and Imaging, 2014, 8 (2) : 339-359. doi: 10.3934/ipi.2014.8.339 |
[11] |
Chase Mathison. Thermoacoustic Tomography with circular integrating detectors and variable wave speed. Inverse Problems and Imaging, 2020, 14 (4) : 665-682. doi: 10.3934/ipi.2020030 |
[12] |
Hiroshi Fujiwara, Kamran Sadiq, Alexandru Tamasan. Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc. Inverse Problems and Imaging, 2022, 16 (1) : 215-228. doi: 10.3934/ipi.2021047 |
[13] |
Leonid Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Problems and Imaging, 2012, 6 (1) : 111-131. doi: 10.3934/ipi.2012.6.111 |
[14] |
C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems and Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457 |
[15] |
Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems and Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341 |
[16] |
Alexander Barg, Oleg R. Musin. Codes in spherical caps. Advances in Mathematics of Communications, 2007, 1 (1) : 131-149. doi: 10.3934/amc.2007.1.131 |
[17] |
Susanna V. Haziot. On the spherical geopotential approximation for Saturn. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2327-2336. doi: 10.3934/cpaa.2022035 |
[18] |
David Rojas, Pedro J. Torres. Bifurcation of relative equilibria generated by a circular vortex path in a circular domain. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 749-760. doi: 10.3934/dcdsb.2019265 |
[19] |
Martin Bauer, Thomas Fidler, Markus Grasmair. Local uniqueness of the circular integral invariant. Inverse Problems and Imaging, 2013, 7 (1) : 107-122. doi: 10.3934/ipi.2013.7.107 |
[20] |
Hengrui Luo, Alice Patania, Jisu Kim, Mikael Vejdemo-Johansson. Generalized penalty for circular coordinate representation. Foundations of Data Science, 2021, 3 (4) : 729-767. doi: 10.3934/fods.2021024 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]