May  2016, 15(3): 1041-1055. doi: 10.3934/cpaa.2016.15.1041

Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting

1. 

School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, China, China

2. 

School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, Hubei, 437100, China

3. 

Department of Mathematics, University of Miami, Coral Gables, FL 33124

Received  June 2015 Revised  November 2015 Published  February 2016

Recently, we (J. Huang, Y. Gong and S. Ruan, Discrete Contin. Dynam. Syst. B 18 (2013), 2101-2121) showed that a Leslie-Gower type predator-prey model with constant-yield predator harvesting has a Bogdanov-Takens singularity (cusp) of codimension 3 for some parameter values. In this paper, we prove analytically that the model undergoes Bogdanov-Takens bifurcation (cusp case) of codimension 3. To confirm the theoretical analysis and results, we also perform numerical simulations for various bifurcation scenarios, including the existence of two limit cycles, the coexistence of a stable homoclinic loop and an unstable limit cycle, supercritical and subcritical Hopf bifurcations, and homoclinic bifurcation of codimension 1.
Citation: Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041
References:
[1]

J. R. Beddington and J. G. Cooke, Harvesting from a prey-predator complex, Ecol. Modelling, 14 (1982), 155-177.

[2]

J. R. Beddington and R. M. May, Maximum sustainable yields in systems subject to harvesting at more than one trophic level, Math. Biosci., 51 (1980), 261-281. doi: 10.1016/0025-5564(80)90103-0.

[3]

F. Brauer and A. C. Soudack, Stability regions and transition phenomena for harvested predator-prey systems, J. Math. Biol., 7 (1979), 319-337. doi: 10.1007/BF00275152.

[4]

F. Brauer and A. C. Soudack, Stability regions in predator-prey systems with constant-rate prey harvesting, J. Math. Biol., 8 (1979), 55-71. doi: 10.1007/BF00280586.

[5]

F. Brauer and A. C. Soudack, Coexistence properties of some predator-prey systems under constant rate harvesting and stocking, J. Math. Biol., 12 (1981), 101-114. doi: 10.1007/BF00275206.

[6]

J. Chen, J. Huang, S. Ruan and J. Wang, Bifurcations of invariant tori in predator-prey models with seasonal prey harvesting, SIAM J Appl Math, 73 (2013), 1876-1905. doi: 10.1137/120895858.

[7]

S. N. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, New York, 1994. doi: 10.1017/CBO9780511665639.

[8]

C. W. Clark, Mathematical Bioeconomics, The Optimal Management of Renewable Resources, 2nd ed., John Wily and Sons, New York, Toronto, 1990.

[9]

G. Dai and M. Tang, Coexistence region and global dynamics of a harvested predator-prey system, SIAM J. Appl. Math., 58 (1998), 193-210. doi: 10.1137/S0036139994275799.

[10]

F. Dumortier, R. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3, Ergodic Theor. Dyn. Syst., 3 (1987), 375-413. doi: 10.1017/S0143385700004119.

[11]

F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek, Bifurcations of Planar Vector Fields Nilpotent Singularities and Abelian Integrals, Lecture Notes in Mathematics, 1480, Springer-Verlag, Berlin, 1991.

[12]

R. M. Etoua and C. Rousseau, Bifurcation analysis of a Generalized Gause model with prey harvesting and a generalized Holling response function of type III, J. Differential Equations, 249 (2010), 2316-2356. doi: 10.1016/j.jde.2010.06.021.

[13]

Y. Gong and J. Huang, Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with prey harvesting, Acta Math. Appl. Sinica Eng. Ser., 30 (2014), 239-244. doi: 10.1007/s10255-014-0279-x.

[14]

S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey system, SIAM J. Appl. Math., 55 (1995), 763-783. doi: 10.1137/S0036139993253201.

[15]

J. Huang, J. Chen, Y. Gong and W. Zhang, Complex dynamics in predator-prey models with nonmonotonic functional response and harvesting, Math. Model. Nat. Phenom, 8 (2013), 95-118. doi: 10.1051/mmnp/20138507.

[16]

J. Huang, Y. Gong and J. Chen, Multiple bifurcations in a predator-prey system of Holling and Leslie type with constant-yield prey harvesting, Internat. J. Bifur. Chaos, 23 (2013), 1350164, 24 pp. doi: 10.1142/S0218127413501642.

[17]

J. Huang, Y. Gong and S. Ruan, Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2101-2121. doi: 10.3934/dcdsb.2013.18.2101.

[18]

Y. Lamontagne, C. Coutu and C. Rousseau, Bifurcation analysis of a predator-prey system with generalized Holling type III functional response, J. Dynam. Differential Equations, 20 (2008), 535-571. doi: 10.1007/s10884-008-9102-9.

[19]

B. Leard, C. Lewis and J. Rebaza, Dynamics of ratio-dependent predator-prey models with nonconstant harvesting, Discrete Contin. Dyn. Syst. Ser. S, 1 (2008), 303-315. doi: 10.3934/dcdss.2008.1.303.

[20]

C. Li, J. Li and Z. Ma, Codimension 3 B-T bifurcation in an epidemic model with a nonlinear incidence, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1107-1116. doi: 10.3934/dcdsb.2015.20.1107.

[21]

R. May, J. R. Beddington, C. W. Clark, S. J. Holt and R. M. Laws, Management of multispecies fisheries, Science, 205 (1979), 267-277.

[22]

L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 1996. doi: 10.1007/978-1-4684-0249-0.

[23]

D. Xiao and L. S. Jennings, Bifurcations of a ratio-dependent predator-prey with constant rate harvesting, SIAM J. Appl. Math., 65 (2005), 737-753. doi: 10.1137/S0036139903428719.

[24]

D. Xiao and S. Ruan, Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting, Fields Inst. Commun., 21 (1999), 493-506.

[25]

H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 63 (2002), 636-682. doi: 10.1137/S0036139901397285.

[26]

C. R. Zhu and K. Q. Lan, Phase portraits, Hopf bifurcation and limit cycles of Leslie-Gower predator-prey systems with harvesting rates, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 289-306. doi: 10.3934/dcdsb.2010.14.289.

show all references

References:
[1]

J. R. Beddington and J. G. Cooke, Harvesting from a prey-predator complex, Ecol. Modelling, 14 (1982), 155-177.

[2]

J. R. Beddington and R. M. May, Maximum sustainable yields in systems subject to harvesting at more than one trophic level, Math. Biosci., 51 (1980), 261-281. doi: 10.1016/0025-5564(80)90103-0.

[3]

F. Brauer and A. C. Soudack, Stability regions and transition phenomena for harvested predator-prey systems, J. Math. Biol., 7 (1979), 319-337. doi: 10.1007/BF00275152.

[4]

F. Brauer and A. C. Soudack, Stability regions in predator-prey systems with constant-rate prey harvesting, J. Math. Biol., 8 (1979), 55-71. doi: 10.1007/BF00280586.

[5]

F. Brauer and A. C. Soudack, Coexistence properties of some predator-prey systems under constant rate harvesting and stocking, J. Math. Biol., 12 (1981), 101-114. doi: 10.1007/BF00275206.

[6]

J. Chen, J. Huang, S. Ruan and J. Wang, Bifurcations of invariant tori in predator-prey models with seasonal prey harvesting, SIAM J Appl Math, 73 (2013), 1876-1905. doi: 10.1137/120895858.

[7]

S. N. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, New York, 1994. doi: 10.1017/CBO9780511665639.

[8]

C. W. Clark, Mathematical Bioeconomics, The Optimal Management of Renewable Resources, 2nd ed., John Wily and Sons, New York, Toronto, 1990.

[9]

G. Dai and M. Tang, Coexistence region and global dynamics of a harvested predator-prey system, SIAM J. Appl. Math., 58 (1998), 193-210. doi: 10.1137/S0036139994275799.

[10]

F. Dumortier, R. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3, Ergodic Theor. Dyn. Syst., 3 (1987), 375-413. doi: 10.1017/S0143385700004119.

[11]

F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek, Bifurcations of Planar Vector Fields Nilpotent Singularities and Abelian Integrals, Lecture Notes in Mathematics, 1480, Springer-Verlag, Berlin, 1991.

[12]

R. M. Etoua and C. Rousseau, Bifurcation analysis of a Generalized Gause model with prey harvesting and a generalized Holling response function of type III, J. Differential Equations, 249 (2010), 2316-2356. doi: 10.1016/j.jde.2010.06.021.

[13]

Y. Gong and J. Huang, Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with prey harvesting, Acta Math. Appl. Sinica Eng. Ser., 30 (2014), 239-244. doi: 10.1007/s10255-014-0279-x.

[14]

S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey system, SIAM J. Appl. Math., 55 (1995), 763-783. doi: 10.1137/S0036139993253201.

[15]

J. Huang, J. Chen, Y. Gong and W. Zhang, Complex dynamics in predator-prey models with nonmonotonic functional response and harvesting, Math. Model. Nat. Phenom, 8 (2013), 95-118. doi: 10.1051/mmnp/20138507.

[16]

J. Huang, Y. Gong and J. Chen, Multiple bifurcations in a predator-prey system of Holling and Leslie type with constant-yield prey harvesting, Internat. J. Bifur. Chaos, 23 (2013), 1350164, 24 pp. doi: 10.1142/S0218127413501642.

[17]

J. Huang, Y. Gong and S. Ruan, Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2101-2121. doi: 10.3934/dcdsb.2013.18.2101.

[18]

Y. Lamontagne, C. Coutu and C. Rousseau, Bifurcation analysis of a predator-prey system with generalized Holling type III functional response, J. Dynam. Differential Equations, 20 (2008), 535-571. doi: 10.1007/s10884-008-9102-9.

[19]

B. Leard, C. Lewis and J. Rebaza, Dynamics of ratio-dependent predator-prey models with nonconstant harvesting, Discrete Contin. Dyn. Syst. Ser. S, 1 (2008), 303-315. doi: 10.3934/dcdss.2008.1.303.

[20]

C. Li, J. Li and Z. Ma, Codimension 3 B-T bifurcation in an epidemic model with a nonlinear incidence, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1107-1116. doi: 10.3934/dcdsb.2015.20.1107.

[21]

R. May, J. R. Beddington, C. W. Clark, S. J. Holt and R. M. Laws, Management of multispecies fisheries, Science, 205 (1979), 267-277.

[22]

L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 1996. doi: 10.1007/978-1-4684-0249-0.

[23]

D. Xiao and L. S. Jennings, Bifurcations of a ratio-dependent predator-prey with constant rate harvesting, SIAM J. Appl. Math., 65 (2005), 737-753. doi: 10.1137/S0036139903428719.

[24]

D. Xiao and S. Ruan, Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting, Fields Inst. Commun., 21 (1999), 493-506.

[25]

H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 63 (2002), 636-682. doi: 10.1137/S0036139901397285.

[26]

C. R. Zhu and K. Q. Lan, Phase portraits, Hopf bifurcation and limit cycles of Leslie-Gower predator-prey systems with harvesting rates, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 289-306. doi: 10.3934/dcdsb.2010.14.289.

[1]

Jicai Huang, Yijun Gong, Shigui Ruan. Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2101-2121. doi: 10.3934/dcdsb.2013.18.2101

[2]

Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3253-3269. doi: 10.3934/dcdss.2020130

[3]

Min Lu, Chuang Xiang, Jicai Huang. Bogdanov-Takens bifurcation in a SIRS epidemic model with a generalized nonmonotone incidence rate. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3125-3138. doi: 10.3934/dcdss.2020115

[4]

Xun Cao, Xianyong Chen, Weihua Jiang. Bogdanov-Takens bifurcation with $ Z_2 $ symmetry and spatiotemporal dynamics in diffusive Rosenzweig-MacArthur model involving nonlocal prey competition. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022031

[5]

Dongmei Xiao. Dynamics and bifurcations on a class of population model with seasonal constant-yield harvesting. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 699-719. doi: 10.3934/dcdsb.2016.21.699

[6]

Ming Liu, Dongpo Hu, Fanwei Meng. Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3197-3222. doi: 10.3934/dcdss.2020259

[7]

Tongtong Chen, Jixun Chu. Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022082

[8]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[9]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[10]

Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

[11]

Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129

[12]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[13]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[14]

Qing Zhu, Huaqin Peng, Xiaoxiao Zheng, Huafeng Xiao. Bifurcation analysis of a stage-structured predator-prey model with prey refuge. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2195-2209. doi: 10.3934/dcdss.2019141

[15]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[16]

Shu Li, Zhenzhen Li, Binxiang Dai. Stability and Hopf bifurcation in a prey-predator model with memory-based diffusion. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022025

[17]

Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233

[18]

Xiao He, Sining Zheng. Bifurcation analysis and dynamic behavior to a predator-prey model with Beddington-DeAngelis functional response and protection zone. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4641-4657. doi: 10.3934/dcdsb.2020117

[19]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[20]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (232)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]