May  2016, 15(3): 1041-1055. doi: 10.3934/cpaa.2016.15.1041

Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting

1. 

School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, China, China

2. 

School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, Hubei, 437100, China

3. 

Department of Mathematics, University of Miami, Coral Gables, FL 33124

Received  June 2015 Revised  November 2015 Published  February 2016

Recently, we (J. Huang, Y. Gong and S. Ruan, Discrete Contin. Dynam. Syst. B 18 (2013), 2101-2121) showed that a Leslie-Gower type predator-prey model with constant-yield predator harvesting has a Bogdanov-Takens singularity (cusp) of codimension 3 for some parameter values. In this paper, we prove analytically that the model undergoes Bogdanov-Takens bifurcation (cusp case) of codimension 3. To confirm the theoretical analysis and results, we also perform numerical simulations for various bifurcation scenarios, including the existence of two limit cycles, the coexistence of a stable homoclinic loop and an unstable limit cycle, supercritical and subcritical Hopf bifurcations, and homoclinic bifurcation of codimension 1.
Citation: Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041
References:
[1]

J. R. Beddington and J. G. Cooke, Harvesting from a prey-predator complex,, \emph{Ecol. Modelling}, 14 (1982), 155.   Google Scholar

[2]

J. R. Beddington and R. M. May, Maximum sustainable yields in systems subject to harvesting at more than one trophic level,, \emph{Math. Biosci.}, 51 (1980), 261.  doi: 10.1016/0025-5564(80)90103-0.  Google Scholar

[3]

F. Brauer and A. C. Soudack, Stability regions and transition phenomena for harvested predator-prey systems,, \emph{J. Math. Biol.}, 7 (1979), 319.  doi: 10.1007/BF00275152.  Google Scholar

[4]

F. Brauer and A. C. Soudack, Stability regions in predator-prey systems with constant-rate prey harvesting,, \emph{J. Math. Biol.}, 8 (1979), 55.  doi: 10.1007/BF00280586.  Google Scholar

[5]

F. Brauer and A. C. Soudack, Coexistence properties of some predator-prey systems under constant rate harvesting and stocking,, \emph{J. Math. Biol.}, 12 (1981), 101.  doi: 10.1007/BF00275206.  Google Scholar

[6]

J. Chen, J. Huang, S. Ruan and J. Wang, Bifurcations of invariant tori in predator-prey models with seasonal prey harvesting,, \emph{SIAM J Appl Math}, 73 (2013), 1876.  doi: 10.1137/120895858.  Google Scholar

[7]

S. N. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields,, Cambridge University Press, (1994).  doi: 10.1017/CBO9780511665639.  Google Scholar

[8]

C. W. Clark, Mathematical Bioeconomics, The Optimal Management of Renewable Resources,, 2nd ed., (1990).   Google Scholar

[9]

G. Dai and M. Tang, Coexistence region and global dynamics of a harvested predator-prey system,, \emph{SIAM J. Appl. Math.}, 58 (1998), 193.  doi: 10.1137/S0036139994275799.  Google Scholar

[10]

F. Dumortier, R. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3,, \emph{Ergodic Theor. Dyn. Syst.}, 3 (1987), 375.  doi: 10.1017/S0143385700004119.  Google Scholar

[11]

F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek, Bifurcations of Planar Vector Fields Nilpotent Singularities and Abelian Integrals,, Lecture Notes in Mathematics, 1480 (1991).   Google Scholar

[12]

R. M. Etoua and C. Rousseau, Bifurcation analysis of a Generalized Gause model with prey harvesting and a generalized Holling response function of type III,, \emph{J. Differential Equations}, 249 (2010), 2316.  doi: 10.1016/j.jde.2010.06.021.  Google Scholar

[13]

Y. Gong and J. Huang, Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with prey harvesting,, \emph{Acta Math. Appl. Sinica Eng. Ser.}, 30 (2014), 239.  doi: 10.1007/s10255-014-0279-x.  Google Scholar

[14]

S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey system,, \emph{SIAM J. Appl. Math.}, 55 (1995), 763.  doi: 10.1137/S0036139993253201.  Google Scholar

[15]

J. Huang, J. Chen, Y. Gong and W. Zhang, Complex dynamics in predator-prey models with nonmonotonic functional response and harvesting,, \emph{Math. Model. Nat. Phenom}, 8 (2013), 95.  doi: 10.1051/mmnp/20138507.  Google Scholar

[16]

J. Huang, Y. Gong and J. Chen, Multiple bifurcations in a predator-prey system of Holling and Leslie type with constant-yield prey harvesting,, \emph{Internat. J. Bifur. Chaos}, 23 (2013).  doi: 10.1142/S0218127413501642.  Google Scholar

[17]

J. Huang, Y. Gong and S. Ruan, Bifurcation analysis in a predator-prey model with constant-yield predator harvesting,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 18 (2013), 2101.  doi: 10.3934/dcdsb.2013.18.2101.  Google Scholar

[18]

Y. Lamontagne, C. Coutu and C. Rousseau, Bifurcation analysis of a predator-prey system with generalized Holling type III functional response,, \emph{J. Dynam. Differential Equations}, 20 (2008), 535.  doi: 10.1007/s10884-008-9102-9.  Google Scholar

[19]

B. Leard, C. Lewis and J. Rebaza, Dynamics of ratio-dependent predator-prey models with nonconstant harvesting,, \emph{Discrete Contin. Dyn. Syst. Ser. S}, 1 (2008), 303.  doi: 10.3934/dcdss.2008.1.303.  Google Scholar

[20]

C. Li, J. Li and Z. Ma, Codimension 3 B-T bifurcation in an epidemic model with a nonlinear incidence,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 20 (2015), 1107.  doi: 10.3934/dcdsb.2015.20.1107.  Google Scholar

[21]

R. May, J. R. Beddington, C. W. Clark, S. J. Holt and R. M. Laws, Management of multispecies fisheries,, \emph{Science}, 205 (1979), 267.   Google Scholar

[22]

L. Perko, Differential Equations and Dynamical Systems,, Springer, (1996).  doi: 10.1007/978-1-4684-0249-0.  Google Scholar

[23]

D. Xiao and L. S. Jennings, Bifurcations of a ratio-dependent predator-prey with constant rate harvesting,, \emph{SIAM J. Appl. Math.}, 65 (2005), 737.  doi: 10.1137/S0036139903428719.  Google Scholar

[24]

D. Xiao and S. Ruan, Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting,, \emph{Fields Inst. Commun.}, 21 (1999), 493.   Google Scholar

[25]

H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response,, \emph{SIAM J. Appl. Math.}, 63 (2002), 636.  doi: 10.1137/S0036139901397285.  Google Scholar

[26]

C. R. Zhu and K. Q. Lan, Phase portraits, Hopf bifurcation and limit cycles of Leslie-Gower predator-prey systems with harvesting rates,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 14 (2010), 289.  doi: 10.3934/dcdsb.2010.14.289.  Google Scholar

show all references

References:
[1]

J. R. Beddington and J. G. Cooke, Harvesting from a prey-predator complex,, \emph{Ecol. Modelling}, 14 (1982), 155.   Google Scholar

[2]

J. R. Beddington and R. M. May, Maximum sustainable yields in systems subject to harvesting at more than one trophic level,, \emph{Math. Biosci.}, 51 (1980), 261.  doi: 10.1016/0025-5564(80)90103-0.  Google Scholar

[3]

F. Brauer and A. C. Soudack, Stability regions and transition phenomena for harvested predator-prey systems,, \emph{J. Math. Biol.}, 7 (1979), 319.  doi: 10.1007/BF00275152.  Google Scholar

[4]

F. Brauer and A. C. Soudack, Stability regions in predator-prey systems with constant-rate prey harvesting,, \emph{J. Math. Biol.}, 8 (1979), 55.  doi: 10.1007/BF00280586.  Google Scholar

[5]

F. Brauer and A. C. Soudack, Coexistence properties of some predator-prey systems under constant rate harvesting and stocking,, \emph{J. Math. Biol.}, 12 (1981), 101.  doi: 10.1007/BF00275206.  Google Scholar

[6]

J. Chen, J. Huang, S. Ruan and J. Wang, Bifurcations of invariant tori in predator-prey models with seasonal prey harvesting,, \emph{SIAM J Appl Math}, 73 (2013), 1876.  doi: 10.1137/120895858.  Google Scholar

[7]

S. N. Chow, C. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields,, Cambridge University Press, (1994).  doi: 10.1017/CBO9780511665639.  Google Scholar

[8]

C. W. Clark, Mathematical Bioeconomics, The Optimal Management of Renewable Resources,, 2nd ed., (1990).   Google Scholar

[9]

G. Dai and M. Tang, Coexistence region and global dynamics of a harvested predator-prey system,, \emph{SIAM J. Appl. Math.}, 58 (1998), 193.  doi: 10.1137/S0036139994275799.  Google Scholar

[10]

F. Dumortier, R. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3,, \emph{Ergodic Theor. Dyn. Syst.}, 3 (1987), 375.  doi: 10.1017/S0143385700004119.  Google Scholar

[11]

F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek, Bifurcations of Planar Vector Fields Nilpotent Singularities and Abelian Integrals,, Lecture Notes in Mathematics, 1480 (1991).   Google Scholar

[12]

R. M. Etoua and C. Rousseau, Bifurcation analysis of a Generalized Gause model with prey harvesting and a generalized Holling response function of type III,, \emph{J. Differential Equations}, 249 (2010), 2316.  doi: 10.1016/j.jde.2010.06.021.  Google Scholar

[13]

Y. Gong and J. Huang, Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with prey harvesting,, \emph{Acta Math. Appl. Sinica Eng. Ser.}, 30 (2014), 239.  doi: 10.1007/s10255-014-0279-x.  Google Scholar

[14]

S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey system,, \emph{SIAM J. Appl. Math.}, 55 (1995), 763.  doi: 10.1137/S0036139993253201.  Google Scholar

[15]

J. Huang, J. Chen, Y. Gong and W. Zhang, Complex dynamics in predator-prey models with nonmonotonic functional response and harvesting,, \emph{Math. Model. Nat. Phenom}, 8 (2013), 95.  doi: 10.1051/mmnp/20138507.  Google Scholar

[16]

J. Huang, Y. Gong and J. Chen, Multiple bifurcations in a predator-prey system of Holling and Leslie type with constant-yield prey harvesting,, \emph{Internat. J. Bifur. Chaos}, 23 (2013).  doi: 10.1142/S0218127413501642.  Google Scholar

[17]

J. Huang, Y. Gong and S. Ruan, Bifurcation analysis in a predator-prey model with constant-yield predator harvesting,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 18 (2013), 2101.  doi: 10.3934/dcdsb.2013.18.2101.  Google Scholar

[18]

Y. Lamontagne, C. Coutu and C. Rousseau, Bifurcation analysis of a predator-prey system with generalized Holling type III functional response,, \emph{J. Dynam. Differential Equations}, 20 (2008), 535.  doi: 10.1007/s10884-008-9102-9.  Google Scholar

[19]

B. Leard, C. Lewis and J. Rebaza, Dynamics of ratio-dependent predator-prey models with nonconstant harvesting,, \emph{Discrete Contin. Dyn. Syst. Ser. S}, 1 (2008), 303.  doi: 10.3934/dcdss.2008.1.303.  Google Scholar

[20]

C. Li, J. Li and Z. Ma, Codimension 3 B-T bifurcation in an epidemic model with a nonlinear incidence,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 20 (2015), 1107.  doi: 10.3934/dcdsb.2015.20.1107.  Google Scholar

[21]

R. May, J. R. Beddington, C. W. Clark, S. J. Holt and R. M. Laws, Management of multispecies fisheries,, \emph{Science}, 205 (1979), 267.   Google Scholar

[22]

L. Perko, Differential Equations and Dynamical Systems,, Springer, (1996).  doi: 10.1007/978-1-4684-0249-0.  Google Scholar

[23]

D. Xiao and L. S. Jennings, Bifurcations of a ratio-dependent predator-prey with constant rate harvesting,, \emph{SIAM J. Appl. Math.}, 65 (2005), 737.  doi: 10.1137/S0036139903428719.  Google Scholar

[24]

D. Xiao and S. Ruan, Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting,, \emph{Fields Inst. Commun.}, 21 (1999), 493.   Google Scholar

[25]

H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response,, \emph{SIAM J. Appl. Math.}, 63 (2002), 636.  doi: 10.1137/S0036139901397285.  Google Scholar

[26]

C. R. Zhu and K. Q. Lan, Phase portraits, Hopf bifurcation and limit cycles of Leslie-Gower predator-prey systems with harvesting rates,, \emph{Discrete Contin. Dyn. Syst. Ser. B}, 14 (2010), 289.  doi: 10.3934/dcdsb.2010.14.289.  Google Scholar

[1]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[2]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[3]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[4]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[5]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[6]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[7]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[8]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[9]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[13]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[14]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[15]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[16]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[17]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[18]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[19]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[20]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]