\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Large time behavior of a conserved phase-field system

Abstract / Introduction Related Papers Cited by
  • We investigate the large time behavior of a conserved phase-field system that describes the phase separation in a material with viscosity effects. We prove a well-posedness result, the existence of the global attractor and its upper semicontinuity, when the heat capacity tends to zero. Then we prove the existence of inertial manifolds in one space dimension, and for the case of a rectangular domain in two space dimension. We also construct robust families of exponential attractors that converge in the sense of upper and lower semicontinuity to those of the viscous Cahn-Hilliard equation. Continuity properties of the intersection of the inertial manifolds with bounded absorbing sets are also proven. This work extends and improves some recent results proven by A. Bonfoh for both the conserved and non-conserved phase-field systems.
    Mathematics Subject Classification: Primary: 35B25, 35B41, 37L25; Secondary: 82C26.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Bonfoh, Dynamics of the conserved phase-field system, Appl. Analysis, 95 (2016), 44-62.doi: 10.1080/00036811.2014.997225.

    [2]

    A. Bonfoh, The singular limit dynamics of the phase-field equations, Ann. Mat. Pura Appl., 190 (2011), 105-144.doi: 10.1007/s10231-010-0141-6.

    [3]

    A. Bonfoh, M. Grasselli and A. Miranville, Singularly perturbed 1D Cahn-Hilliard equation revisited, Nonlinear Differ. Equ. Appli., 17 (2010), 663-695.doi: 10.1007/s00030-010-0075-0.

    [4]

    A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations, Nonlinear Anal., 47 (2001), 3455-3466.doi: 10.1016/S0362-546X(01)00463-1.

    [5]

    D. Brochet, Maximal attractor and inertial sets for some second and fourth order phase field models, Pitman Res. Notes Math. Ser., vol. 296, Longman Sci. Tech., Harlow, 1993, 77-85.

    [6]

    D. Brochet, D. Hilhorst and A. Novick-Cohen, Maximal attractor and inertial sets for a conserved phase field model, Adv. Diff. Eqns, 1 (1996), 547-578.

    [7]

    G. Caginalp, Conserved-phase field system: implications for kinetic undercooling, Phys. Rev. B, 38 (1988), 789-791.

    [8]

    S.-N. Chow and K. Lu, Invariant manifolds for flow in Banach spaces, J. Diff. Eqns, 74 (1988), 285-317.doi: 10.1016/0022-0396(88)90007-1.

    [9]

    S.-N. Chow, K. Lu and G.R. Sell, Smoothness of inertial manifolds, J. Math. Anal. Appl., 169 (1992), 283-312.doi: 10.1016/0022-247X(92)90115-T.

    [10]

    C.M. Elliott and A.M. Stuart, The viscous Cahn-Hilliard equation. II. Analysis, J. Differential Equations, 128 (1996), 387-414.doi: 10.1006/jdeq.1996.0101.

    [11]

    S. Gatti, M. Grasselli, A. Miranville and V. Pata, A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc., 134 (2006), 117-127.doi: 10.1090/S0002-9939-05-08340-1.

    [12]

    S. Gatti, M. Grasselli, A. Miranville and V. Pata, Hyperbolic relaxation of the viscous Cahn-Hilliard equation in 3-D, Math. Models Methods Appl. Sciences, 15 (2005), 165-198.doi: 10.1142/S0218202505000327.

    [13]

    G. Gilardi, On a conserved phase field model with irregular potentials and dynamic boundary conditions, Istit. Lombardo Accad. Sci. Lett. Rend. A, 141 (2007), 129-161.

    [14]

    A. Miranville, On the conserved phase-field model, J. Math. Anal. Appl., 400 (2013), 143-152.doi: 10.1016/j.jmaa.2012.11.038.

    [15]

    A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Evolutionary equations. Vol. IV, 103-200, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008.doi: 10.1016/S1874-5717(08)00003-0.

    [16]

    G. Mola, Global attractors for a three-dimensional conserved phase-field system with memory, Comm. Pure Appl. Anal., 7 (2008), 317-353.doi: 10.3934/cpaa.2008.7.317.

    [17]

    G. Mola, Stability of global and exponential attractors for a three-dimensional conserved phase-field system with memory, Math. Models Methods Appl. Sciences, 32 (2009), 2368-2404.doi: 10.1002/mma.1139.

    [18]

    X. Mora and J. Solà-Morales, The singular limit dynamics of semilineardamped wave equations, J. Differential Equations, 78 (1989), 262-307.doi: 10.1016/0022-0396(89)90065-X.

    [19]

    B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations, Comm. Partial Differential Equations, 14 (1989), 245-297.doi: 10.1080/03605308908820597.

    [20]

    A. Novick-Cohen, On the viscous Cahn-Hilliard equation, in Material Instabilities in Continuum Mechanics (Edinburgh, 1985-1986), 329-342, Oxford Sci. Publ., Oxford Univ. Press, New York, 1988.

    [21]

    I. Richards, On the gaps between numbers which are sums of two squares, Adv. Math., 46 (1982), 1-2.doi: 10.1016/0001-8708(82)90051-2.

    [22]

    J.C. Robinson, Infinite-dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.doi: 10.1007/978-94-010-0732-0.

    [23]

    R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd Edition, Springer-Verlag, Berlin, Heidelberg, New York, 1997.doi: 10.1007/978-1-4612-0645-3.

    [24]

    S. Zheng and A. Milani, Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations, Nonlinear Anal., 57 (2004), 843-877.doi: 10.1016/j.na.2004.03.023.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(188) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return