Citation: |
[1] |
A. Bonfoh, Dynamics of the conserved phase-field system, Appl. Analysis, 95 (2016), 44-62.doi: 10.1080/00036811.2014.997225. |
[2] |
A. Bonfoh, The singular limit dynamics of the phase-field equations, Ann. Mat. Pura Appl., 190 (2011), 105-144.doi: 10.1007/s10231-010-0141-6. |
[3] |
A. Bonfoh, M. Grasselli and A. Miranville, Singularly perturbed 1D Cahn-Hilliard equation revisited, Nonlinear Differ. Equ. Appli., 17 (2010), 663-695.doi: 10.1007/s00030-010-0075-0. |
[4] |
A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations, Nonlinear Anal., 47 (2001), 3455-3466.doi: 10.1016/S0362-546X(01)00463-1. |
[5] |
D. Brochet, Maximal attractor and inertial sets for some second and fourth order phase field models, Pitman Res. Notes Math. Ser., vol. 296, Longman Sci. Tech., Harlow, 1993, 77-85. |
[6] |
D. Brochet, D. Hilhorst and A. Novick-Cohen, Maximal attractor and inertial sets for a conserved phase field model, Adv. Diff. Eqns, 1 (1996), 547-578. |
[7] |
G. Caginalp, Conserved-phase field system: implications for kinetic undercooling, Phys. Rev. B, 38 (1988), 789-791. |
[8] |
S.-N. Chow and K. Lu, Invariant manifolds for flow in Banach spaces, J. Diff. Eqns, 74 (1988), 285-317.doi: 10.1016/0022-0396(88)90007-1. |
[9] |
S.-N. Chow, K. Lu and G.R. Sell, Smoothness of inertial manifolds, J. Math. Anal. Appl., 169 (1992), 283-312.doi: 10.1016/0022-247X(92)90115-T. |
[10] |
C.M. Elliott and A.M. Stuart, The viscous Cahn-Hilliard equation. II. Analysis, J. Differential Equations, 128 (1996), 387-414.doi: 10.1006/jdeq.1996.0101. |
[11] |
S. Gatti, M. Grasselli, A. Miranville and V. Pata, A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc., 134 (2006), 117-127.doi: 10.1090/S0002-9939-05-08340-1. |
[12] |
S. Gatti, M. Grasselli, A. Miranville and V. Pata, Hyperbolic relaxation of the viscous Cahn-Hilliard equation in 3-D, Math. Models Methods Appl. Sciences, 15 (2005), 165-198.doi: 10.1142/S0218202505000327. |
[13] |
G. Gilardi, On a conserved phase field model with irregular potentials and dynamic boundary conditions, Istit. Lombardo Accad. Sci. Lett. Rend. A, 141 (2007), 129-161. |
[14] |
A. Miranville, On the conserved phase-field model, J. Math. Anal. Appl., 400 (2013), 143-152.doi: 10.1016/j.jmaa.2012.11.038. |
[15] |
A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Evolutionary equations. Vol. IV, 103-200, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008.doi: 10.1016/S1874-5717(08)00003-0. |
[16] |
G. Mola, Global attractors for a three-dimensional conserved phase-field system with memory, Comm. Pure Appl. Anal., 7 (2008), 317-353.doi: 10.3934/cpaa.2008.7.317. |
[17] |
G. Mola, Stability of global and exponential attractors for a three-dimensional conserved phase-field system with memory, Math. Models Methods Appl. Sciences, 32 (2009), 2368-2404.doi: 10.1002/mma.1139. |
[18] |
X. Mora and J. Solà-Morales, The singular limit dynamics of semilineardamped wave equations, J. Differential Equations, 78 (1989), 262-307.doi: 10.1016/0022-0396(89)90065-X. |
[19] |
B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations, Comm. Partial Differential Equations, 14 (1989), 245-297.doi: 10.1080/03605308908820597. |
[20] |
A. Novick-Cohen, On the viscous Cahn-Hilliard equation, in Material Instabilities in Continuum Mechanics (Edinburgh, 1985-1986), 329-342, Oxford Sci. Publ., Oxford Univ. Press, New York, 1988. |
[21] |
I. Richards, On the gaps between numbers which are sums of two squares, Adv. Math., 46 (1982), 1-2.doi: 10.1016/0001-8708(82)90051-2. |
[22] |
J.C. Robinson, Infinite-dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.doi: 10.1007/978-94-010-0732-0. |
[23] |
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd Edition, Springer-Verlag, Berlin, Heidelberg, New York, 1997.doi: 10.1007/978-1-4612-0645-3. |
[24] |
S. Zheng and A. Milani, Exponential attractors and inertial manifolds for singular perturbations of the Cahn-Hilliard equations, Nonlinear Anal., 57 (2004), 843-877.doi: 10.1016/j.na.2004.03.023. |