\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nonlinear noncoercive Neumann problems

Abstract / Introduction Related Papers Cited by
  • We consider nonlinear, nonhomogeneous and noncoercive Neumann problems with a Carathéodory reaction which is either $(p-1)$-superlinear near $\pm\infty$ (without satisfying the usual in such cases Ambrosetti-Rabinowitz condition) or $(p-1)$-sublinear near $\pm\infty$. Using variational methods and Morse theory (critical groups) we prove two existence theorems.
    Mathematics Subject Classification: Primary: 35J20; Secondary: 35J60, 58E05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.

    [2]

    T. Bartsch and S.-J. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal., 28 (1997), 419-441.doi: 10.1016/0362-546X(95)00167-T.

    [3]

    J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1978.

    [4]

    M. Filippakis and N.S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the $p$-Laplacian, J. Differential Equations, 245 (2008), 1883-1922.doi: 10.1016/j.jde.2008.07.004.

    [5]

    L. Gasiński and N.S. Papageorgiou, Nonlinear Analysis, Chapman and Hall/CRC Press, Boca Raton, FL, 2006.

    [6]

    L. Gasiński and N.S. Papageorgiou, Existence and multiplicity of solutions for Neumann $p$-Laplacian-type equations, Adv. Nonlinear Stud., 8 (2008), 843-870.

    [7]

    L. Gasiński and N.S. Papageorgiou, Multiple solutions for nonlinear Dirichlet problems with concave terms, Math. Scand., 113 (2013), 206-247.

    [8]

    L. Gasiński and N.S. Papageorgiou, A pair of positive solutions for the Dirichlet $p(z)$-Laplacian with concave and convex nonlinearities, J. Global Optim., 56 (2013), 1347-1360.doi: 10.1007/s10898-011-9841-8.

    [9]

    L. Gasiński and N.S. Papageorgiou, On generalized logistic equations with a non-homogeneous differential operator, Dyn. Syst., 29 (2014), 190-207.doi: 10.1080/14689367.2013.870125.

    [10]

    L. Gasiński and N.S. Papageorgiou, Positive solutions for parametric equidiffusive $p$-Laplacian equations, Acta Math. Sci. Ser. B Engl. Ed., 34 (2014), 610-618.doi: 10.1016/S0252-9602(14)60033-3.

    [11]

    L. Gasiński and N.S. Papageorgiou, A pair of positive solutions for $(p,q)$-equations with combined nonlinearities, Commun. Pure Appl. Anal., 13 (2014), 203-215.doi: 10.3934/cpaa.2014.13.203.

    [12]

    L. Gasiński and N.S. Papageorgiou, Dirichlet $(p,q)$-equations at resonance, Discrete Contin. Dyn. Syst., 34 (2014), 2037-2060.doi: 10.3934/dcds.2014.34.2037.

    [13]

    L. Gasiński and N.S. Papageorgiou, Multiple solutions for a class of nonlinear Neumann eigenvalue problems, Commun. Pure Appl. Anal., 13 (2014), 1491-1512.doi: 10.3934/cpaa.2014.13.1491.

    [14]

    A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003.doi: 10.1007/978-0-387-21593-8.

    [15]

    Q.-S. Jiu and J.-B. Su, Existence and multiplicity results for Dirichlet problems with $p$-Laplacian, J. Math. Anal. Appl., 281 (2003), 587-601.doi: 10.1016/S0022-247X(03)00165-3.

    [16]

    G.M. Lieberman, The natural generalizations of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations, Comm. Partial Differential Equations, 16 (1991), 311-361.doi: 10.1080/03605309108820761.

    [17]

    V. Moroz, Solutions of superlinear at zero elliptic equations via Morse theory, Topol. Methods Nonlinear Anal., 10 (1997), 387-397.

    [18]

    D. Motreanu, V.V. Motreanu and N.S. Papageorgiou, A unified approach for multiple constant sign and nodal solutions, Adv. Differential Equations, 121 (2007), 1363-1392.

    [19]

    D. Motreanu, V. Motreanu and N.S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.doi: 10.1007/978-1-4614-9323-5.

    [20]

    Z.-Q. Wang, On a superlinear elliptic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 43-57.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(167) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return