July  2016, 15(4): 1139-1156. doi: 10.3934/cpaa.2016.15.1139

Existence and uniqueness for $\mathbb{D}$-solutions of reflected BSDEs with two barriers without Mokobodzki's condition

1. 

Université de Sfax, Faculté des Sciences de Sfax, département de mathématiques, BP 1171 Sfax 3000, Tunisia

Received  January 2015 Revised  February 2016 Published  April 2016

In this paper, we are interested in the problem of existence and uniqueness of a solution which belongs to class $\mathbb{D}$ for a backward stochastic differential equation with two strictly separated continuous reflecting barriers in the case when the data are $\mathbb{L}^1$-integrable and with generator satisfying the Lipschitz property. The main idea is to use the notion of local solution to obtain the global one.
Citation: Imen Hassairi. Existence and uniqueness for $\mathbb{D}$-solutions of reflected BSDEs with two barriers without Mokobodzki's condition. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1139-1156. doi: 10.3934/cpaa.2016.15.1139
References:
[1]

Ph. Briand, B. Delyon, Y. Hu, E. Pardoux and L. Stoica, $L^p$ solutions of backward stochastic differential equations, Stochastic Process. Appl., 108 (2003), 109-129. doi: 10.1016/S0304-4149(03)00089-9.

[2]

J. Cvitanic and I. Karatzas, Backward stochastic differential equations with reflection and Dynkin games, Annals of probability, 24 (1996), 2024-2056. doi: 10.1214/aop/1041903216.

[3]

C. Dellacherie and P. A. Meyer, Probabilit et Potentiel I-IV, Hermann, Paris, 1975.

[4]

C. Dellacherie and P. A. Meyer, Probabilit et Potentiel V-VIII Hermann, Paris, 1980

[5]

B. El Asri, S. Hamade and H. Wang, $L^p$ solutions for doubly reflected backward stochastic differential equations, Stochastic Analysis and Applications, 29 (2011), 907-932. doi: 10.1080/07362994.2011.564442.

[6]

N. El Karoui, Les aspects probabilistes du contrôle stochastique, in Ecole dEtde Probabilit de Saint-Flour IX, Volume 876 of the series Lecture Notes in Mathematics , (1979), 73-238.

[7]

N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M. C. Quenez, Reflected solutions of backward SDE's, and related obstacle problems for PDEs, Ann Probab., 25 (1997), 702-737. doi: 10.1214/aop/1024404416.

[8]

S. Hamadène, Mixed zero-sum differential game and American game options, SIAM J. Control Optim., 45 (2006), 496-518. doi: 10.1137/S036301290444280X.

[9]

S. Hamadène, Reflected BSDE's with discontinuous barriers and application, Stochastics and Sotochastics Reports, (2002), 571-596.

[10]

S. Hamadène and M. Hassani, BSDEs with two reflecting barriers: the general result, Probability theory and related fields, 132 (2005), 237-264. doi: 10.1007/s00440-004-0395-2.

[11]

S. Hamadène and M. Jeanblanc, On the stopping and starting problem: application to reversible investment, Mathematics of Operations Research, 32 (2007), 182-192. doi: 10.1287/moor.1060.0228.

[12]

S. Hamadène and J. P. Lepeltier, Reflected backward SDE's and mixed game problems, Stochastic Processes and their Applications, 85 (2000), 177-188. doi: 10.1016/S0304-4149(99)00072-1.

[13]

S. Hamadène and Y. Ouknine, Reflected backward stochastic differential equation with jumps and random obstacle, Electronic Journal of Probability. 8 (2003), 1-20. doi: 10.1214/EJP.v8-124.

[14]

S. Hamadène and A. Popier, $L^p$ solutions for reflected backward stochastic differential equations, Stochastics and Dynamics, 12 (2012), 35 pages. doi: 10.1142/S0219493712003651.

[15]

T. Klimsiak, Reflected BSDEs with monotone generator, Electronic Journal of Probability, 107 (2012), 1-25. doi: 10.1214/EJP.v17-1759.

[16]

T. Klimsiak, BSDEs with monotone generator and two irregular reflecting barriers, Bulletin des Sciences Math閙atiques, 137 (2013), 268-321. doi: 10.1016/j.bulsci.2012.06.006.

[17]

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equations, Systems and Control Letters, 14, (1990), 55-61. doi: 10.1016/0167-6911(90)90082-6.

[18]

S. Peng, Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer's type, Probability Theory and Related Fields, 113 (1999), 473-499. doi: 10.1007/s004400050214.

[19]

E. P. Protter, Stochastic Integration and Differential Equations, 2nd edition, Springer, New York, 2000.

[20]

D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, New York, 1994.

[21]

A. Roskoz and L. Slominski, $L^p$ solutions for reflected BSDEs under monotonicity condition, Stochastic Processes and their Applications, 122 (2012), 3875-3900. doi: 10.1016/j.spa.2012.07.006.

show all references

References:
[1]

Ph. Briand, B. Delyon, Y. Hu, E. Pardoux and L. Stoica, $L^p$ solutions of backward stochastic differential equations, Stochastic Process. Appl., 108 (2003), 109-129. doi: 10.1016/S0304-4149(03)00089-9.

[2]

J. Cvitanic and I. Karatzas, Backward stochastic differential equations with reflection and Dynkin games, Annals of probability, 24 (1996), 2024-2056. doi: 10.1214/aop/1041903216.

[3]

C. Dellacherie and P. A. Meyer, Probabilit et Potentiel I-IV, Hermann, Paris, 1975.

[4]

C. Dellacherie and P. A. Meyer, Probabilit et Potentiel V-VIII Hermann, Paris, 1980

[5]

B. El Asri, S. Hamade and H. Wang, $L^p$ solutions for doubly reflected backward stochastic differential equations, Stochastic Analysis and Applications, 29 (2011), 907-932. doi: 10.1080/07362994.2011.564442.

[6]

N. El Karoui, Les aspects probabilistes du contrôle stochastique, in Ecole dEtde Probabilit de Saint-Flour IX, Volume 876 of the series Lecture Notes in Mathematics , (1979), 73-238.

[7]

N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M. C. Quenez, Reflected solutions of backward SDE's, and related obstacle problems for PDEs, Ann Probab., 25 (1997), 702-737. doi: 10.1214/aop/1024404416.

[8]

S. Hamadène, Mixed zero-sum differential game and American game options, SIAM J. Control Optim., 45 (2006), 496-518. doi: 10.1137/S036301290444280X.

[9]

S. Hamadène, Reflected BSDE's with discontinuous barriers and application, Stochastics and Sotochastics Reports, (2002), 571-596.

[10]

S. Hamadène and M. Hassani, BSDEs with two reflecting barriers: the general result, Probability theory and related fields, 132 (2005), 237-264. doi: 10.1007/s00440-004-0395-2.

[11]

S. Hamadène and M. Jeanblanc, On the stopping and starting problem: application to reversible investment, Mathematics of Operations Research, 32 (2007), 182-192. doi: 10.1287/moor.1060.0228.

[12]

S. Hamadène and J. P. Lepeltier, Reflected backward SDE's and mixed game problems, Stochastic Processes and their Applications, 85 (2000), 177-188. doi: 10.1016/S0304-4149(99)00072-1.

[13]

S. Hamadène and Y. Ouknine, Reflected backward stochastic differential equation with jumps and random obstacle, Electronic Journal of Probability. 8 (2003), 1-20. doi: 10.1214/EJP.v8-124.

[14]

S. Hamadène and A. Popier, $L^p$ solutions for reflected backward stochastic differential equations, Stochastics and Dynamics, 12 (2012), 35 pages. doi: 10.1142/S0219493712003651.

[15]

T. Klimsiak, Reflected BSDEs with monotone generator, Electronic Journal of Probability, 107 (2012), 1-25. doi: 10.1214/EJP.v17-1759.

[16]

T. Klimsiak, BSDEs with monotone generator and two irregular reflecting barriers, Bulletin des Sciences Math閙atiques, 137 (2013), 268-321. doi: 10.1016/j.bulsci.2012.06.006.

[17]

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equations, Systems and Control Letters, 14, (1990), 55-61. doi: 10.1016/0167-6911(90)90082-6.

[18]

S. Peng, Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer's type, Probability Theory and Related Fields, 113 (1999), 473-499. doi: 10.1007/s004400050214.

[19]

E. P. Protter, Stochastic Integration and Differential Equations, 2nd edition, Springer, New York, 2000.

[20]

D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, New York, 1994.

[21]

A. Roskoz and L. Slominski, $L^p$ solutions for reflected BSDEs under monotonicity condition, Stochastic Processes and their Applications, 122 (2012), 3875-3900. doi: 10.1016/j.spa.2012.07.006.

[1]

Yinggu Chen, Said HamadÈne, Tingshu Mu. Mean-field doubly reflected backward stochastic differential equations. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022012

[2]

Monia Karouf. Reflected solutions of backward doubly SDEs driven by Brownian motion and Poisson random measure. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5571-5601. doi: 10.3934/dcds.2019245

[3]

Marcus A. Khuri. On the local solvability of Darboux's equation. Conference Publications, 2009, 2009 (Special) : 451-456. doi: 10.3934/proc.2009.2009.451

[4]

Leonor Cruzeiro. The VES hypothesis and protein misfolding. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1033-1046. doi: 10.3934/dcdss.2011.4.1033

[5]

Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations and Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023

[6]

Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481

[7]

Goro Akagi. Doubly nonlinear evolution equations and Bean's critical-state model for type-II superconductivity. Conference Publications, 2005, 2005 (Special) : 30-39. doi: 10.3934/proc.2005.2005.30

[8]

Zheng-Chao Han, YanYan Li. On the local solvability of the Nirenberg problem on $\mathbb S^2$. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 607-615. doi: 10.3934/dcds.2010.28.607

[9]

Ernesto Aranda, Pablo Pedregal. Constrained envelope for a general class of design problems. Conference Publications, 2003, 2003 (Special) : 30-41. doi: 10.3934/proc.2003.2003.30

[10]

Hélène Hibon, Ying Hu, Yiqing Lin, Peng Luo, Falei Wang. Quadratic BSDEs with mean reflection. Mathematical Control and Related Fields, 2018, 8 (3&4) : 721-738. doi: 10.3934/mcrf.2018031

[11]

Rui Qian, Rong Hu, Ya-Ping Fang. Local smooth representation of solution sets in parametric linear fractional programming problems. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 45-52. doi: 10.3934/naco.2019004

[12]

Shu-Guang Shao, Shu Wang, Wen-Qing Xu, Yu-Li Ge. On the local C1, α solution of ideal magneto-hydrodynamical equations. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2103-2113. doi: 10.3934/dcds.2017090

[13]

Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2637-2659. doi: 10.3934/dcds.2019110

[14]

Hua Qiu, Shaomei Fang. A BKM's criterion of smooth solution to the incompressible viscoelastic flow. Communications on Pure and Applied Analysis, 2014, 13 (2) : 823-833. doi: 10.3934/cpaa.2014.13.823

[15]

Dmitry Jakobson and Iosif Polterovich. Lower bounds for the spectral function and for the remainder in local Weyl's law on manifolds. Electronic Research Announcements, 2005, 11: 71-77.

[16]

Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075

[17]

Amarjit Budhiraja, John Fricks. Molecular motors, Brownian ratchets, and reflected diffusions. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 711-734. doi: 10.3934/dcdsb.2006.6.711

[18]

Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 257-269. doi: 10.3934/naco.2012.2.257

[19]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374

[20]

Martin Hutzenthaler, Thomas Kruse, Tuan Anh Nguyen. On the speed of convergence of Picard iterations of BSDEs. Probability, Uncertainty and Quantitative Risk, , () : -. doi: 10.3934/puqr.2022009

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (164)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]