Advanced Search
Article Contents
Article Contents

On the $L^p-$ theory of Anisotropic singular perturbations of elliptic problems

Abstract Related Papers Cited by
  • In this article we give an extension of the $L^2-$theory of anisotropic singular perturbations for elliptic problems. We study a linear and some nonlinear problems involving $L^{p}$ data ($1 < p < 2$). Convergences in pseudo Sobolev spaces are proved for weak and entropy solutions, and rate of convergence is given in cylindrical domains.
    Mathematics Subject Classification: 35J15, 35B25.


    \begin{equation} \\ \end{equation}
  • [1]

    R.A. Adams and John J.F. Fournier, Sobolev Spaces, Pure and Applied Mathematics, Academic Press, 2003.


    S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math, 12 (1959), 623-727.


    L. Boccardo, T. Gallouët and J.L. Vazquez, Nonlinear elliptic equations in $R^n$ without growth restrictions on the data, Journal of Differential Equations, 105 (1993), 334-363.doi: 10.1006/jdeq.1993.1092.


    Ph. Bénilan, Philippe, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre and J.L. Vazquez, An $L^{1}$-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola. Norm. Sup. Pisa Cl. Sci, 22 (1995), 241-273.


    M. Chipot, Elliptic Equations, An Introductory Cours, Birkhauser, ISBN: 978-3764399818, 2009.doi: 10.1007/978-3-7643-9982-5.


    M. Chipot, On some anisotropic singular perturbation problems, Asymptotic Analysis, 55 (2007), 125-144.


    M. Chipot and K. Yeressian, Exponential rates of convergence by an iteration technique, C. R. Acad. Sci. Paris, Ser. I, 346 (2008), 21-26.doi: 10.1016/j.crma.2007.12.004.


    M. Chipot and S. Guesmia, On the asymptotic behaviour of elliptic, anisotropic singular perturbations problems, Com. Pur. App. Ana, 8 (2009), 179-193.doi: 10.3934/cpaa.2009.8.179.


    M. Chipot, S. Guesmia and M. Sengouga, Singular perturbations of some nonlinear problems, J. Math. Sci, 176 2011, 828-843.doi: 10.1007/s10958-011-0439-y.


    M. Chipot and S. Guesmia, On a class of integro-differential problems, Commun. Pure Appl. Anal., 9 2010, 1249-1262.doi: 10.3934/cpaa.2010.9.1249.


    P. Enflo, A counterexample to the approximation problem in Banach spaces, Acta Mathematica, 130 (1973), 309-317.


    S. Fucik, O. John and J. Necas, On the existence of Schauder basis in Sobolev spaces, Comment. Math. Univ. Carolin, 13 (1972), 163-175.


    T. Gallouet and R. Herbin, Existence of a solution to a coupled elliptic system, Appl.Math. Letters, 7 (1994), 49-55.doi: 10.1016/0893-9659(94)90030-2.


    C. Ogabi, On a class of nonlinear elliptic, anisotropic singular perturbations problems, Preprint: https://hal.archives-ouvertes.fr/hal-01074262.


    J. Serrin, Pathological solutions of elliptic differential equations, Ann. Sc. Norm. Sup. Pisa, 18 (1964), 385-387.

  • 加载中

Article Metrics

HTML views() PDF downloads(161) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint