• Previous Article
    On the initial boundary value problem for certain 2D MHD-$\alpha$ equations without velocity viscosity
  • CPAA Home
  • This Issue
  • Next Article
    Existence and uniqueness for $\mathbb{D}$-solutions of reflected BSDEs with two barriers without Mokobodzki's condition
July  2016, 15(4): 1157-1178. doi: 10.3934/cpaa.2016.15.1157

On the $L^p-$ theory of Anisotropic singular perturbations of elliptic problems

1. 

Académie de Grenoble, Lycée Saint-Marc, Nivolas-Vermelle, 38300, France

Received  April 2015 Revised  January 2016 Published  April 2016

In this article we give an extension of the $L^2-$theory of anisotropic singular perturbations for elliptic problems. We study a linear and some nonlinear problems involving $L^{p}$ data ($1 < p < 2$). Convergences in pseudo Sobolev spaces are proved for weak and entropy solutions, and rate of convergence is given in cylindrical domains.
Citation: Ogabi Chokri. On the $L^p-$ theory of Anisotropic singular perturbations of elliptic problems. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1157-1178. doi: 10.3934/cpaa.2016.15.1157
References:
[1]

R.A. Adams and John J.F. Fournier, Sobolev Spaces,, Pure and Applied Mathematics, (2003).   Google Scholar

[2]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I,, \emph{Comm. Pure Appl. Math}, 12 (1959), 623.   Google Scholar

[3]

L. Boccardo, T. Gallouët and J.L. Vazquez, Nonlinear elliptic equations in $R^n$ without growth restrictions on the data,, \emph{Journal of Differential Equations}, 105 (1993), 334.  doi: 10.1006/jdeq.1993.1092.  Google Scholar

[4]

Ph. Bénilan, Philippe, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre and J.L. Vazquez, An $L^{1}$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, \emph{Ann. Scuola. Norm. Sup. Pisa Cl. Sci}, 22 (1995), 241.   Google Scholar

[5]

M. Chipot, Elliptic Equations, An Introductory Cours,, Birkhauser, (2009), 978.  doi: 10.1007/978-3-7643-9982-5.  Google Scholar

[6]

M. Chipot, On some anisotropic singular perturbation problems,, \emph{Asymptotic Analysis}, 55 (2007), 125.   Google Scholar

[7]

M. Chipot and K. Yeressian, Exponential rates of convergence by an iteration technique,, \emph{C. R. Acad. Sci. Paris}, 346 (2008), 21.  doi: 10.1016/j.crma.2007.12.004.  Google Scholar

[8]

M. Chipot and S. Guesmia, On the asymptotic behaviour of elliptic, anisotropic singular perturbations problems,, \emph{Com. Pur. App. Ana}, 8 (2009), 179.  doi: 10.3934/cpaa.2009.8.179.  Google Scholar

[9]

M. Chipot, S. Guesmia and M. Sengouga, Singular perturbations of some nonlinear problems,, \emph{J. Math. Sci}, 176 (2011), 828.  doi: 10.1007/s10958-011-0439-y.  Google Scholar

[10]

M. Chipot and S. Guesmia, On a class of integro-differential problems,, \emph{Commun. Pure Appl. Anal.}, 9 (2010), 1249.  doi: 10.3934/cpaa.2010.9.1249.  Google Scholar

[11]

P. Enflo, A counterexample to the approximation problem in Banach spaces,, \emph{Acta Mathematica}, 130 (1973), 309.   Google Scholar

[12]

S. Fucik, O. John and J. Necas, On the existence of Schauder basis in Sobolev spaces,, \emph{Comment. Math. Univ. Carolin}, 13 (1972), 163.   Google Scholar

[13]

T. Gallouet and R. Herbin, Existence of a solution to a coupled elliptic system,, \emph{Appl.Math. Letters}, 7 (1994), 49.  doi: 10.1016/0893-9659(94)90030-2.  Google Scholar

[14]

C. Ogabi, On a class of nonlinear elliptic, anisotropic singular perturbations problems,, \textit{Preprint:} \url{https://hal.archives-ouvertes.fr/hal-01074262}., ().   Google Scholar

[15]

J. Serrin, Pathological solutions of elliptic differential equations,, \emph{Ann. Sc. Norm. Sup. Pisa}, 18 (1964), 385.   Google Scholar

show all references

References:
[1]

R.A. Adams and John J.F. Fournier, Sobolev Spaces,, Pure and Applied Mathematics, (2003).   Google Scholar

[2]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I,, \emph{Comm. Pure Appl. Math}, 12 (1959), 623.   Google Scholar

[3]

L. Boccardo, T. Gallouët and J.L. Vazquez, Nonlinear elliptic equations in $R^n$ without growth restrictions on the data,, \emph{Journal of Differential Equations}, 105 (1993), 334.  doi: 10.1006/jdeq.1993.1092.  Google Scholar

[4]

Ph. Bénilan, Philippe, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre and J.L. Vazquez, An $L^{1}$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, \emph{Ann. Scuola. Norm. Sup. Pisa Cl. Sci}, 22 (1995), 241.   Google Scholar

[5]

M. Chipot, Elliptic Equations, An Introductory Cours,, Birkhauser, (2009), 978.  doi: 10.1007/978-3-7643-9982-5.  Google Scholar

[6]

M. Chipot, On some anisotropic singular perturbation problems,, \emph{Asymptotic Analysis}, 55 (2007), 125.   Google Scholar

[7]

M. Chipot and K. Yeressian, Exponential rates of convergence by an iteration technique,, \emph{C. R. Acad. Sci. Paris}, 346 (2008), 21.  doi: 10.1016/j.crma.2007.12.004.  Google Scholar

[8]

M. Chipot and S. Guesmia, On the asymptotic behaviour of elliptic, anisotropic singular perturbations problems,, \emph{Com. Pur. App. Ana}, 8 (2009), 179.  doi: 10.3934/cpaa.2009.8.179.  Google Scholar

[9]

M. Chipot, S. Guesmia and M. Sengouga, Singular perturbations of some nonlinear problems,, \emph{J. Math. Sci}, 176 (2011), 828.  doi: 10.1007/s10958-011-0439-y.  Google Scholar

[10]

M. Chipot and S. Guesmia, On a class of integro-differential problems,, \emph{Commun. Pure Appl. Anal.}, 9 (2010), 1249.  doi: 10.3934/cpaa.2010.9.1249.  Google Scholar

[11]

P. Enflo, A counterexample to the approximation problem in Banach spaces,, \emph{Acta Mathematica}, 130 (1973), 309.   Google Scholar

[12]

S. Fucik, O. John and J. Necas, On the existence of Schauder basis in Sobolev spaces,, \emph{Comment. Math. Univ. Carolin}, 13 (1972), 163.   Google Scholar

[13]

T. Gallouet and R. Herbin, Existence of a solution to a coupled elliptic system,, \emph{Appl.Math. Letters}, 7 (1994), 49.  doi: 10.1016/0893-9659(94)90030-2.  Google Scholar

[14]

C. Ogabi, On a class of nonlinear elliptic, anisotropic singular perturbations problems,, \textit{Preprint:} \url{https://hal.archives-ouvertes.fr/hal-01074262}., ().   Google Scholar

[15]

J. Serrin, Pathological solutions of elliptic differential equations,, \emph{Ann. Sc. Norm. Sup. Pisa}, 18 (1964), 385.   Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[3]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[4]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[9]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[10]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[11]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[12]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[13]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[14]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[15]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[16]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[17]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[18]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[19]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[20]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]