Citation: |
[1] |
P.W. Bates, P.C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.doi: 10.1007/s002050050037. |
[2] |
H. Berestycki, J. Coville and H.-H. Vo, Persistence criteria for populations with non-local dispersion, J. Math. Biol., DOI: 10.1007/s00285-015-0911-2. |
[3] |
H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations, Perspectives in nonlinear partial differential equations, 101-123, Contemp. Math., 446, Amer. Math. Soc., Providence, RI, 2007.doi: 10.1090/conm/446/08627. |
[4] |
H. Berestycki and F. Hamel, Generalized transition waves and their properties, Comm. Pure Appl. Math., 65 (2012), 592-648.doi: 10.1002/cpa.21389. |
[5] |
J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.doi: 10.1090/S0002-9939-04-07432-5. |
[6] |
X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal., 38 (2006), 233-258.doi: 10.1137/050627824. |
[7] |
X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Differential Equations, 184 (2002), 549-569.doi: 10.1006/jdeq.2001.4153. |
[8] |
X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146.doi: 10.1007/s00208-003-0414-0. |
[9] |
J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations, Nonlinear Anal., 60 (2005), 797-819.doi: 10.1016/j.na.2003.10.030. |
[10] |
J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727-755.doi: 10.1017/S0308210504000721. |
[11] |
J. Coville, J. Dávila and S. Martínez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 179-223.doi: 10.1016/j.anihpc.2012.07.005. |
[12] |
S.-C. Fu, J.-S. Guo and S.-Y Shieh, Traveling wave solutions for some discrete quasilinear parabolic equations, Nonlinear Anal., 48 (2002), 1137-1149.doi: 10.1016/S0362-546X(00)00242-X. |
[13] |
J.-S. Guo and F. Hamel, Front propagation for discrete periodic monostable equations, Math. Ann., 335 (2006), 489-525.doi: 10.1007/s00208-005-0729-0. |
[14] |
J.-S. Guo and C.-C. Wu, Uniqueness and stability of traveling waves for periodic monostable lattice dynamical system, J. Differential Equations, 246 (2009), 3818-3833.doi: 10.1016/j.jde.2009.03.010. |
[15] |
W. Hudson and B. Zinner, Existence of traveling waves for a generalized discrete Fisher's equation, Comm. Appl. Nonlinear Anal., 1 (1994), 23-46. |
[16] |
T. Lim and A. Zlatoš, Transition fronts for inhomogeneous Fisher-KPP reactions and non-local diffusion, Trans. Amer. Math. Soc., DOI: http://dx.doi.org/10.1090/tran/6602. |
[17] |
G. Nadin and L. Rossi, Propagation phenomena for time heterogeneous KPP reaction-diffusion equations, J. Math. Pures Appl. (9), 98 (2012), 633-653.doi: 10.1016/j.matpur.2012.05.005. |
[18] |
J. Nolen, J.-M. Roquejoffre, L. Ryzhik and A. Zlatoš, Existence and non-existence of Fisher-KPP transition fronts, Arch. Ration. Mech. Anal., 203 (2012), 217-246.doi: 10.1007/s00205-011-0449-4. |
[19] |
N. Rawal, W. Shen and A. Zhang, Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats, Discrete Contin. Dyn. Syst., 35 (2015), 1609-1640.doi: 10.3934/dcds.2015.35.1609. |
[20] |
K. Schumacher, Traveling-front solutions for integro-differential equations. I, J. Reine Angew. Math., 316 (1980), 54-70.doi: 10.1515/crll.1980.316.54. |
[21] |
W. Shen, Traveling waves in diffusive random media, J. Dynam. Differential Equations, 16 (2004), 1011-1060.doi: 10.1007/s10884-004-7832-x. |
[22] |
W. Shen, Existence, uniqueness, and stability of generalized traveling waves in time dependent monostable equations, J. Dynam. Differential Equations, 23 (2011), 1-44.doi: 10.1007/s10884-010-9200-3. |
[23] |
W. Shen and Z. Shen, Transition fronts in nonlocal equations with time heterogeneous ignition nonlinearity, Discrete Contin. Dyn. Syst. A, accepted. http://arxiv.org/abs/1410.4611. |
[24] |
W. Shen and Z. Shen, Regularity and stability of transition fronts in nonlocal equations with time heterogeneous ignition nonlinearity, http://arxiv.org/abs/1501.02029. |
[25] |
W. Shen and Z. Shen, Regularity of transition fronts in nonlocal dispersal evolution equations, J. Dynam. Differential Equations, DOI: 10.1007/s10884-016-9528-4. |
[26] |
B. Shorrocks and I. Swingland, Living in a Patch Environment, Oxford Univ. Press, New York, 1990. |
[27] |
W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 249 (2010), 747-795.doi: 10.1016/j.jde.2010.04.012. |
[28] |
W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats, Proc. Amer. Math. Soc., 140 (2012), 1681-1696.doi: 10.1090/S0002-9939-2011-11011-6. |
[29] |
W. Shen and A. Zhang, Traveling wave solutions of spatially periodic nonlocal monostable equations, Comm. Appl. Nonlinear Anal., 19 (2012), 73-101. |
[30] |
T. Tao, B. Zhu and A. Zlatoš, Transition fronts for inhomogeneous monostable reaction-diffusion equations via linearization at zero, Nonlinearity, 27 (2014), 2409-2416.doi: 10.1088/0951-7715/27/9/2409. |
[31] |
K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ., 18 (1978), 453-508. |
[32] |
J. Wu and X. Zou, Asymptotic and periodic boundary values problems of mixed PDEs and wave solutions of lattice differential equations, J. Differential Equations, 135 (1997), 315-357.doi: 10.1006/jdeq.1996.3232. |
[33] |
A. Zlatoš, Transition fronts in inhomogeneous Fisher-KPP reaction-diffusion equations, J. Math. Pures Appl. (9), 98 (2012), 89-102.doi: 10.1016/j.matpur.2011.11.007. |
[34] |
B. Zinner, G. Harris and W. Hudson, Traveling wavefronts for the discrete Fisher's equation, J. Differential Equations, 105 (1993), 46-62.doi: 10.1006/jdeq.1993.1082. |