\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Least energy solutions of nonlinear Schrödinger equations involving the half Laplacian and potential wells

Abstract / Introduction Related Papers Cited by
  • In this paper, we are concerned with the existence of least energy solutions of nonlinear Schrödinger equations involving the half Laplacian \begin{eqnarray} (-\Delta)^{1/2}u(x)+\lambda V(x)u(x)=u(x)^{p-1}, u(x)\geq 0, \quad x\in R^N, \end{eqnarray} for sufficiently large $\lambda$, $2 < p < \frac{2N}{N-1}$ for $N \geq 2$. $V(x)$ is a real continuous function on $R^N$. Using variational methods we prove the existence of least energy solution $u(x)$ which localize near the potential well int$(V^{-1}(0))$ for $\lambda$ large. Moreover, if the zero sets int$(V^{-1}(0))$ of $V(x)$ include more than one isolated components, then $u_\lambda(x)$ will be trapped around all the isolated components. However, in Laplacian case, when the parameter $\lambda$ large, the corresponding least energy solution will be trapped around only one isolated component and become arbitrary small in other components of int$(V^{-1}(0))$. This is the essential difference with the Laplacian problems since the operator $(-\Delta)^{1/2}$ is nonlocal.
    Mathematics Subject Classification: Primary: 35Q55; Secondary: 35J65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 140 (1997), 285-300.doi: 10.1007/s002050050067.

    [2]

    D. Applebaum, Lévy processes--from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.

    [3]

    T. Bartsch and Z. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys., 51 (2000), 366-384.doi: 10.1007/s000330050003.

    [4]

    J.L. Bona and Y.A. Li, Decay and analyticity of solitary waves, J. Math. Pures Appl., 76 (1997), 377-430.doi: 10.1016/S0021-7824(97)89957-6.

    [5]

    X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.doi: 10.1016/j.aim.2010.01.025.

    [6]

    L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. in Part. Diff. Equa., 32 (2007), 1245-1260.doi: 10.1080/03605300600987306.

    [7]

    M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53 (2012), 043507.doi: 10.1063/1.3701574.

    [8]

    S. Cingolani and M. Nolasco, Multi-peaks periodic semiclassical states for a class of nonlinear Schrödinger equations, Proc. Roy. Soc. Edinburgh., 128 (1998), 1249-1260.doi: 10.1017/S030821050002730X.

    [9]

    J. Dávila, M. del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Diff. Equa., 256 (2014), 858-892.doi: 10.1016/j.jde.2013.10.006.

    [10]

    A. de Bouard and J. C. Saut, Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves, SIAM J. Math. Anal., 28 (1997), 1064-1085.doi: 10.1137/S0036141096297662.

    [11]

    M. del Pino and P. Felmer, Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., 149 (1997), 245-265.doi: 10.1006/jfan.1996.3085.

    [12]

    M. del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire., 15 (1998), 127-149.doi: 10.1016/S0294-1449(97)89296-7.

    [13]

    S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche, 68 (2013), 201-216.

    [14]

    P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh., 142A (2012), 1237-1262.doi: 10.1017/S0308210511000746.

    [15]

    A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.doi: 10.1016/0022-1236(86)90096-0.

    [16]

    R.L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $R$, Acta Math., 210 (2013), 261-318.doi: 10.1007/s11511-013-0095-9.

    [17]

    R.L. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure. Appl. Math., to appear.

    [18]

    T. Jin, Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc., 16 (2014), 1111-1171.doi: 10.4171/JEMS/456.

    [19]

    P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part I. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.

    [20]

    M. Maris, On the existence, regularity and decay of solitary waves to a generalized Benjamin-Ono equation, Nonlinear Anal., 51 (2002), 1073-1085.doi: 10.1016/S0362-546X(01)00880-X.

    [21]

    Y.-G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys., 131 (1990), 223-253.

    [22]

    Y.-G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of class $(V)_a$, Comm. Part. Diff. Equat., 13 (1988), 1499-1519.doi: 10.1080/03605308808820585.

    [23]

    J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms, Discrete Contin. Dyn. Syst., 31 (2011), 975-983.doi: 10.3934/dcds.2011.31.975.

    [24]

    Z. Tang, On the least energy solutions of nonlinear Schrödinger equations with electromagnetic fields, Comput. Math. Appl., 54 (2007), 627-637.doi: 10.1016/j.camwa.2006.12.031.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(135) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return