Citation: |
[1] |
V.I. Arnold, Proof of a theorem by A. N. Kolmogorov on the persistence of quasi-periodic motions under small perturbations of the Hamiltonian, Uspehi Mat. Nauk, 18 (1963), 13-40. |
[2] |
Q.Y. Bi and J.X. Xu, Persistence of lower dimensional hyperbolic invariant tori for nearly integrable symplectic mappings, Qual. Theory Dyn. Syst., 13 (2014), 269-288.doi: 10.1007/s12346-014-0117-9. |
[3] |
H. Broer, G. Huitema and M. Sevryuk, Quasi-periodic motions in families of dynamical systems, in Lecture Notes in Mathematics, Springer, Berlin, 1645, 1996. |
[4] |
A.D. Bruno, Analytic form of differential equations, Trans. Moscow Math. Soc., 25 (1971), 131-288. |
[5] |
C. Cheng and Y. Sun, Existence of KAM tori in degenerate Hamiltonian systems, J. Differential Equations, 114 (1994), 288-335.doi: 10.1006/jdeq.1994.1152. |
[6] |
L.H. Eliasson, Perturbations of stable invariant tori for Hamiltonian systems, Ann. Scuola Norm. Sup. Pisa., 15 (1988), 115-147. |
[7] |
S.M. Graff, On the conservation of hyperbolic invariant tori for Hamiltonian systems, J. Differ. Eqs., 15 (1974), 1-69. |
[8] |
A.N. Kolmogorov, On conservation of conditionally periodic motions for a small change in Hamilton's function, Dokl. Akad. Nauk. SSSR, 98 (1954), 527-530. |
[9] |
S.B. Kuksin, Nearly integrable infinite dimensional Hamiltonian systems, in Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1556 (1993). |
[10] |
V.K. Melnikov, On some cases of conservation of conditionally periodic motions under a small change of the Hamiltonian function, Soviet Math. Dokl., 6 (1965), 1592-1596. |
[11] |
J. Moser, Convergent series expansions for quasi-periodic motions, Math. Ann., 169 (1967), 136-176. |
[12] |
J. Pöschel, On elliptic lower dimensional tori in Hamiltonian systems, Math. Z., 202 (1989), 559-608.doi: 10.1007/BF01221590. |
[13] |
J. Pöschel, A lecture on the classical KAM theorem, School on Dynamical Systems, May 1992. |
[14] |
J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa., 23 (1996), 119-148. |
[15] |
H. Rüssmann, On twist Hamiltonians. Talk on the Colloque International: Mécanique céleste et systèmes hamiltonians, Marseille, 1990. |
[16] |
H. Rüssmann, Invariant tori in non-degenerate nearly integrable Hamiltonian systems, Regular and Chaotic Dynamics, 6 (2001), 119-204.doi: 10.1070/RD2001v006n02ABEH000169. |
[17] |
M.B. Sevryuk, KAM-stable Hamiltonians, J. Dynamics Control Systems, 1 (1995), 351-366.doi: 10.1007/BF02269374. |
[18] |
X. Wang, J. Xu and D. Zhang, Persistence of lower dimensional elliptic invariant tori for a class of nearly integrable reversible systems, Discrete Contin. Dyn. Syst., Ser. B, 14 (2010), 1237-1249. |
[19] |
J. Xu, Persistence of elliptic lower dimensional invariant Tori for small perturbation of degenerate integrable Hamiltonian systems, Journal of Mathematical Analysis and Applications, 208 (1997), 372-387.doi: 10.1006/jmaa.1997.5313. |
[20] |
J.X. Xu, J.G. You and Q.J. Qiu, Invariant tori for nearly integrable Hamiltonian systems with degeneracy, Mathematische Zeitschrift, 226 (1997), 375-387.doi: 10.1007/PL00004344. |
[21] |
J.X. Xu and J.G. You, Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann's non-degeneracy condition, Journal of Differential Equations, 235 (2007), 609-622.doi: 10.1016/j.jde.2006.12.001. |
[22] |
J.X. Xu and J.G. You, Persistence of the non-twist torus in nearly integrable Hamiltonian systems, Pro Math Amer Soc., 138 (2010), 2385-2395.doi: 10.1090/S0002-9939-10-10151-8. |
[23] |
J.G. You, A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems, Commun. Math. Phys., 192 (1998), 145-168.doi: 10.1007/s002200050294. |
[24] |
E. Zehnder, Generalized implicit function theorems with applications to some small divisor problem. I and II, Commun. Pure Appl. Math., 28 (1975), 91-140. 29 (1976), 49-111. |
[25] |
D. Zhang and J. Xu, On invariant tori of vector field under weaker non-degeneracy condition Nonlinear Differ. Equ. Appl., 22 (2015), 1381-1394. |