-
Previous Article
The lifespan of solutions to semilinear damped wave equations in one space dimension
- CPAA Home
- This Issue
-
Next Article
Persistence of the hyperbolic lower dimensional non-twist invariant torus in a class of Hamiltonian systems
On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary
1. | Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padova, Italy |
2. | Dipartimento di Scienze Statistiche, Università di Padova, Via Cesare Battisti 141, 35121 Padova, Italy |
3. | Università degli Studi di Padova, Dipartimento di Matematica Pura ed Applicata, Via Trieste, 63 - 35121 Padova |
References:
[1] |
M. Bardi, A. Cesaroni and L. Rossi, Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control,, \emph{ESAIM Control Optim. Calc. Var.}, ().
doi: http://dx.doi.org/10.1051/cocv/2015033. |
[2] |
G. Barles and J. Burdeau, The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit control problems,, \emph{Comm. Part. Diff. Eq.}, 20 (1995), 129.
doi: 10.1080/03605309508821090. |
[3] |
G. Barles, A. Porretta and T.T. Tchamba, On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton-Jacobi equations,, \emph{J. Math. Pures Appl.}, 94 (2010), 497.
doi: 10.1016/j.matpur.2010.03.006. |
[4] |
G. Barles and P.E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations,, \emph{SIAM J. Math. Anal.}, 32 (2001), 1311.
doi: 10.1137/S0036141000369344. |
[5] |
H. Berestycki, I. Capuzzo Dolcetta, A. Porretta and L. Rossi, Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators,, \emph{J. Math. Pures Appl.}, 103 (2015), 1276.
doi: 10.1016/j.matpur.2014.10.012. |
[6] |
F. Cagnetti, D. Gomes, H. Mitake and H.V. Tran, A new method for large time behavior of degenerate viscous Hamilton-Jacobi equations with convex Hamiltonians,, \emph{Ann. Inst. H. Poincare Anal. Non Lineaire}, 32 (2015), 183.
doi: 10.1016/j.anihpc.2013.10.005. |
[7] |
M.G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc. (N.S.)}, 27 (1992), 1.
doi: 10.1090/S0273-0979-1992-00266-5. |
[8] |
F. Da Lio, Large time behavior of solutions to parabolic equations with Neumann boundary conditions,, \emph{J. Math. Anal. Appl.}, 339 (2008), 384.
doi: 10.1016/j.jmaa.2007.06.052. |
[9] |
G. Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine,, \emph{Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I.}, 5 (1956), 1.
|
[10] |
D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer, (1988). Google Scholar |
[11] |
H. Ishii and P. Loreti, A class of stochastic optimal control problems with state constraints,, \emph{Indiana Univ. Math. J.}, 51 (2002), 1167.
doi: 10.1512/iumj.2002.51.2079. |
[12] |
J.M. Lasry and P.-L. Lions, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem,, \emph{Math. Ann.}, 283 (1989), 583.
doi: 10.1007/BF01442856. |
[13] |
O. Ley and V.D. Nguyen, Large time behavior for some nonlinear degenerate parabolic equations,, \emph{J. Math. Pures Appl.}, 102 (2014), 293.
doi: 10.1016/j.matpur.2013.11.010. |
[14] |
T. Leonori and A. Porretta, Gradient bounds for elliptic problems singular at the boundary,, \emph{Arch. Ration. Mech. Anal.}, 202 (2011), 663.
doi: 10.1007/s00205-011-0436-9. |
[15] |
G.M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996).
doi: 10.1142/3302. |
[16] |
M.V. Safonov, On the classical solution of Bellman's elliptic equation,, \emph{Sov. Math. Dokl.}, 30 (1984), 482. Google Scholar |
[17] |
N.S. Trudinger, On regularity and existence of viscosity solutions of nonlinear second order, elliptic equations, Partial differential equations and the calculus of variations, Vol. II, 939-957,, \emph{Progr. Nonlinear Differential Equations Appl.}, (1989).
|
[18] |
G. Tian and X.J. Wang, A priori estimates for fully nonlinear parabolic equations,, \emph{Int. Math. Res. Notes}, 169 (2012), 1.
|
show all references
References:
[1] |
M. Bardi, A. Cesaroni and L. Rossi, Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control,, \emph{ESAIM Control Optim. Calc. Var.}, ().
doi: http://dx.doi.org/10.1051/cocv/2015033. |
[2] |
G. Barles and J. Burdeau, The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit control problems,, \emph{Comm. Part. Diff. Eq.}, 20 (1995), 129.
doi: 10.1080/03605309508821090. |
[3] |
G. Barles, A. Porretta and T.T. Tchamba, On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton-Jacobi equations,, \emph{J. Math. Pures Appl.}, 94 (2010), 497.
doi: 10.1016/j.matpur.2010.03.006. |
[4] |
G. Barles and P.E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations,, \emph{SIAM J. Math. Anal.}, 32 (2001), 1311.
doi: 10.1137/S0036141000369344. |
[5] |
H. Berestycki, I. Capuzzo Dolcetta, A. Porretta and L. Rossi, Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators,, \emph{J. Math. Pures Appl.}, 103 (2015), 1276.
doi: 10.1016/j.matpur.2014.10.012. |
[6] |
F. Cagnetti, D. Gomes, H. Mitake and H.V. Tran, A new method for large time behavior of degenerate viscous Hamilton-Jacobi equations with convex Hamiltonians,, \emph{Ann. Inst. H. Poincare Anal. Non Lineaire}, 32 (2015), 183.
doi: 10.1016/j.anihpc.2013.10.005. |
[7] |
M.G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc. (N.S.)}, 27 (1992), 1.
doi: 10.1090/S0273-0979-1992-00266-5. |
[8] |
F. Da Lio, Large time behavior of solutions to parabolic equations with Neumann boundary conditions,, \emph{J. Math. Anal. Appl.}, 339 (2008), 384.
doi: 10.1016/j.jmaa.2007.06.052. |
[9] |
G. Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine,, \emph{Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I.}, 5 (1956), 1.
|
[10] |
D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer, (1988). Google Scholar |
[11] |
H. Ishii and P. Loreti, A class of stochastic optimal control problems with state constraints,, \emph{Indiana Univ. Math. J.}, 51 (2002), 1167.
doi: 10.1512/iumj.2002.51.2079. |
[12] |
J.M. Lasry and P.-L. Lions, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem,, \emph{Math. Ann.}, 283 (1989), 583.
doi: 10.1007/BF01442856. |
[13] |
O. Ley and V.D. Nguyen, Large time behavior for some nonlinear degenerate parabolic equations,, \emph{J. Math. Pures Appl.}, 102 (2014), 293.
doi: 10.1016/j.matpur.2013.11.010. |
[14] |
T. Leonori and A. Porretta, Gradient bounds for elliptic problems singular at the boundary,, \emph{Arch. Ration. Mech. Anal.}, 202 (2011), 663.
doi: 10.1007/s00205-011-0436-9. |
[15] |
G.M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996).
doi: 10.1142/3302. |
[16] |
M.V. Safonov, On the classical solution of Bellman's elliptic equation,, \emph{Sov. Math. Dokl.}, 30 (1984), 482. Google Scholar |
[17] |
N.S. Trudinger, On regularity and existence of viscosity solutions of nonlinear second order, elliptic equations, Partial differential equations and the calculus of variations, Vol. II, 939-957,, \emph{Progr. Nonlinear Differential Equations Appl.}, (1989).
|
[18] |
G. Tian and X.J. Wang, A priori estimates for fully nonlinear parabolic equations,, \emph{Int. Math. Res. Notes}, 169 (2012), 1.
|
[1] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[2] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[3] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021007 |
[4] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[5] |
Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 |
[6] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[7] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[8] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
[9] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[10] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[11] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[12] |
Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240 |
[13] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[14] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[15] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[16] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[17] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[18] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286 |
[19] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[20] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020453 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]