July  2016, 15(4): 1265-1283. doi: 10.3934/cpaa.2016.15.1265

The lifespan of solutions to semilinear damped wave equations in one space dimension

1. 

Department of Mathematics, Hokkaido University, Sapporo, 060-0810

Received  September 2015 Revised  January 2016 Published  April 2016

In the present paper, we consider the initial value problem for semilinear damped wave equations in one space dimension. Wakasugi [7] have obtained an upper bound of the lifespan for the problem only in the subcritical case. On the other hand, D'Abbicco $\&$ Lucente $\&$ Reissig [3] showed a blow-up result in the critical case. The aim of this paper is to give an estimate of the upper bound of the lifespan in the critical case, and show the optimality of the upper bound. Also, we derive an estimate of the lower bound of the lifespan in the subcritical case which shows the optimality of the upper bound in [7]. Moreover, we show that the critical exponent changes when the initial data are odd functions.
Citation: Kyouhei Wakasa. The lifespan of solutions to semilinear damped wave equations in one space dimension. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1265-1283. doi: 10.3934/cpaa.2016.15.1265
References:
[1]

R. Agemi, Y. Kurokawa and H. Takamura, Critical curve for p-q systems of nonlinear wave equations in three space dimensions,, \emph{J. Differential Equations}, 167 (2000), 87.  doi: 10.1006/jdeq.2000.3766.  Google Scholar

[2]

M. D'Abbicco, The threshold of effective damping for semilinear wave equations,, \emph{Mathematical Methods in Applied Sciences}, 38 (2015), 1032.  doi: 10.1002/mma.3126.  Google Scholar

[3]

M. D'Abbicco, S. Lucente and M. Reissig, A shift in the Strauss exponent for semilinear wave equations with a not effective damping,, \emph{Journal of Differential Equations}, 259 (2015), 5040.  doi: 10.1016/j.jde.2015.06.018.  Google Scholar

[4]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, \emph{Manuscripta Math.}, 28 (1979), 235.  doi: 10.1007/BF01647974.  Google Scholar

[5]

H. Kubo, A. Osaka and M. Yazici, Global existence and blow-up for wave equations with weighted nonlinear terms in one space dimension,, \emph{Interdisciplinary Information Sciences}, 19 (2013), 143.  doi: 10.4036/iis.2013.143.  Google Scholar

[6]

K. Wakasa, The lifespan of solutions to wave equations with weighted nonlinear terms in one space dimension,, \emph{Hokkaido Mathematical Journal}, ().   Google Scholar

[7]

Y. Wakasugi, On the Diffusive Structure for the Damped Wave Equation with Variable Coefficients,, Doctoral thesis, (2014).   Google Scholar

show all references

References:
[1]

R. Agemi, Y. Kurokawa and H. Takamura, Critical curve for p-q systems of nonlinear wave equations in three space dimensions,, \emph{J. Differential Equations}, 167 (2000), 87.  doi: 10.1006/jdeq.2000.3766.  Google Scholar

[2]

M. D'Abbicco, The threshold of effective damping for semilinear wave equations,, \emph{Mathematical Methods in Applied Sciences}, 38 (2015), 1032.  doi: 10.1002/mma.3126.  Google Scholar

[3]

M. D'Abbicco, S. Lucente and M. Reissig, A shift in the Strauss exponent for semilinear wave equations with a not effective damping,, \emph{Journal of Differential Equations}, 259 (2015), 5040.  doi: 10.1016/j.jde.2015.06.018.  Google Scholar

[4]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions,, \emph{Manuscripta Math.}, 28 (1979), 235.  doi: 10.1007/BF01647974.  Google Scholar

[5]

H. Kubo, A. Osaka and M. Yazici, Global existence and blow-up for wave equations with weighted nonlinear terms in one space dimension,, \emph{Interdisciplinary Information Sciences}, 19 (2013), 143.  doi: 10.4036/iis.2013.143.  Google Scholar

[6]

K. Wakasa, The lifespan of solutions to wave equations with weighted nonlinear terms in one space dimension,, \emph{Hokkaido Mathematical Journal}, ().   Google Scholar

[7]

Y. Wakasugi, On the Diffusive Structure for the Damped Wave Equation with Variable Coefficients,, Doctoral thesis, (2014).   Google Scholar

[1]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[4]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[5]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[6]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[7]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[8]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[9]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[10]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[11]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[12]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[13]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[14]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[15]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[16]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[17]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[18]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[19]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[20]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]