July  2016, 15(4): 1285-1308. doi: 10.3934/cpaa.2016.15.1285

The Nehari manifold for fractional systems involving critical nonlinearities

1. 

College of Science, Minzu University of China, Beijing 100081, China

2. 

Dipartimento di Informatica, Università degli Studi di Verona, Cá Vignal 2, Strada Le Grazie 15, I-37134 Veron

3. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

Received  September 2015 Revised  January 2016 Published  April 2016

We study the combined effect of concave and convex nonlinearities on the number of positive solutions for a fractional system involving critical Sobolev exponents. With the help of the Nehari manifold, we prove that the system admits at least two positive solutions when the pair of parameters $(\lambda,\mu)$ belongs to a suitable subset of $R^2$.
Citation: Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285
References:
[1]

C.O. Alves, D.C. de Morais Filho and M.A.S. Souto, On systems of elliptic equations involving subcritical or critical Sobolev exponents,, \emph{Nonlinear Anal.}, 42 (2000), 771.  doi: 10.1016/S0362-546X(99)00121-2.  Google Scholar

[2]

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems,, \emph{J. Funct. Anal.}, 122 (1994), 519.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[3]

B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian,, \emph{J. Differential Equations}, 252 (2012), 6133.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[4]

B. Barrios, E. Colorado, R. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 32 (2015), 875.  doi: 10.1016/j.anihpc.2014.04.003.  Google Scholar

[5]

C. Brändle, E. Colorado and A. de Pablo, A concave-convex elliptic problem involving the fractional Laplacian,, \emph{Proc. Roy. Soc. Edinburgh Sect. A. Math.}, 142 (2013), 39.   Google Scholar

[6]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[7]

K.J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function,, \emph{J. Differential Equations}, 193 (2003), 481.  doi: 10.1016/S0022-0396(03)00121-9.  Google Scholar

[8]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv. Math.}, 224 (2010), 2052.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm. Partial Differential Equations}, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[10]

A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations,, \emph{Comm. Partial Differential Equations}, 36 (2011), 1353.  doi: 10.1080/03605302.2011.562954.  Google Scholar

[11]

W. Chen and S. Deng, The Nehari manifold for a nonlinear elliptic operators involving concave-convex nonlinearities,, \emph{Z. Angew. Math. Phys.}, 66 (2015), 1387.  doi: 10.1007/s00033-014-0486-6.  Google Scholar

[12]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[13]

X. Cheng and S. Ma, Existence of three nontrivial solutions for elliptic systems with critcal exponents and weights,, \emph{Nonlinear Anal.}, 69 (2008), 3537.  doi: 10.1016/j.na.2007.09.040.  Google Scholar

[14]

E. Colorado, A. de Pablo and U. Sánchez, Perturbation of a critical fractional equations,, \emph{Pacific J. Math.}, 271 (2014), 65.  doi: 10.2140/pjm.2014.271.65.  Google Scholar

[15]

A. Cotsiolis and N. Tavoularis, Best constant for Sobolev inequalities for higher order fractional derivatives,, \emph{J. Math. Anal. Appl.}, 295 (2004), 225.  doi: 10.1016/j.jmaa.2004.03.034.  Google Scholar

[16]

P. Drabek and S.I. Pohozaev, Positive solutions for the $p$-Laplacian: application of the fibering methods,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 127 (1997), 703.  doi: 10.1017/S0308210500023787.  Google Scholar

[17]

I. Ekeland, On the variational principle,, \emph{J. Math. Anal. Appl.}, 47 (1974), 324.   Google Scholar

[18]

L. Faria, O. Miyagaki, F. Pereira, M. Squassina and C. Zhang, The Brezis-Nirenberg problem for nonlocal systems,, \emph{Adv. Nonlinear Anal.}, 5 (2016), 85.  doi: 10.1515/anona-2015-0114.  Google Scholar

[19]

P. Han, The effect of the domain topology of the number of positive solutions of elliptic systems involving critical Sobolev exponents,, \emph{Houston J. Math.}, 32 (2006), 1241.   Google Scholar

[20]

T. Hsu and H. Lin, Multiple positive solutions for a critical elliptic system with concave-convex nonlinearities,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 139 (2009), 1163.  doi: 10.1017/S0308210508000875.  Google Scholar

[21]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, \emph{Bull. Sci. Math.}, 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[22]

X. Shang, J. Zhang and Y. Yang, Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent,, \emph{Comm. Pure Appl. Anal.}, 13 (2014), 567.  doi: 10.3934/cpaa.2014.13.567.  Google Scholar

[23]

R. Servadei and E. Valdinoci, Mountain pass solutions for nonlinear elliptic operators,, \emph{J. Math. Anal. Appl.}, 389 (2012), 887.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[24]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian,, \emph{Trans. Amer. Math. Soc.}, 367 (2015), 67.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar

[25]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 144 (2014), 831.  doi: 10.1017/S0308210512001783.  Google Scholar

[26]

J. Serra and X. Ros-Oton, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary,, \emph{J. Math. Pures Appl.}, 101 (2014), 275.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[27]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, \emph{Comm. Pure Appl. Math.}, 60 (2007), 67.  doi: 10.1002/cpa.20153.  Google Scholar

[28]

J. Tan, The Brézis-Nirenberg type problem involving the square root of the Laplacian,, \emph{Calc. Var. Partial Differential Equations}, 36 (2011), 21.  doi: 10.1007/s00526-010-0378-3.  Google Scholar

[29]

Y. Wei and X. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian,, \emph{Calc. Var. Partial Differential Equations}, 52 (2015), 95.  doi: 10.1007/s00526-013-0706-5.  Google Scholar

[30]

T.F. Wu, On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function,, \emph{J. Math. Anal. Appl.}, 318 (2006), 253.  doi: 10.1016/j.jmaa.2005.05.057.  Google Scholar

[31]

T.F. Wu, The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions,, \emph{Nonlinear Anal.}, 68 (2008), 1733.  doi: 10.1016/j.na.2007.01.004.  Google Scholar

[32]

X. Yu, The Nehari manifold for elliptic equation involving the square root of the laplacian,, \emph{J. Differential Equations}, 252 (2012), 1283.  doi: 10.1016/j.jde.2011.09.015.  Google Scholar

show all references

References:
[1]

C.O. Alves, D.C. de Morais Filho and M.A.S. Souto, On systems of elliptic equations involving subcritical or critical Sobolev exponents,, \emph{Nonlinear Anal.}, 42 (2000), 771.  doi: 10.1016/S0362-546X(99)00121-2.  Google Scholar

[2]

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems,, \emph{J. Funct. Anal.}, 122 (1994), 519.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[3]

B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian,, \emph{J. Differential Equations}, 252 (2012), 6133.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[4]

B. Barrios, E. Colorado, R. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 32 (2015), 875.  doi: 10.1016/j.anihpc.2014.04.003.  Google Scholar

[5]

C. Brändle, E. Colorado and A. de Pablo, A concave-convex elliptic problem involving the fractional Laplacian,, \emph{Proc. Roy. Soc. Edinburgh Sect. A. Math.}, 142 (2013), 39.   Google Scholar

[6]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[7]

K.J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function,, \emph{J. Differential Equations}, 193 (2003), 481.  doi: 10.1016/S0022-0396(03)00121-9.  Google Scholar

[8]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv. Math.}, 224 (2010), 2052.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[9]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm. Partial Differential Equations}, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[10]

A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations,, \emph{Comm. Partial Differential Equations}, 36 (2011), 1353.  doi: 10.1080/03605302.2011.562954.  Google Scholar

[11]

W. Chen and S. Deng, The Nehari manifold for a nonlinear elliptic operators involving concave-convex nonlinearities,, \emph{Z. Angew. Math. Phys.}, 66 (2015), 1387.  doi: 10.1007/s00033-014-0486-6.  Google Scholar

[12]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[13]

X. Cheng and S. Ma, Existence of three nontrivial solutions for elliptic systems with critcal exponents and weights,, \emph{Nonlinear Anal.}, 69 (2008), 3537.  doi: 10.1016/j.na.2007.09.040.  Google Scholar

[14]

E. Colorado, A. de Pablo and U. Sánchez, Perturbation of a critical fractional equations,, \emph{Pacific J. Math.}, 271 (2014), 65.  doi: 10.2140/pjm.2014.271.65.  Google Scholar

[15]

A. Cotsiolis and N. Tavoularis, Best constant for Sobolev inequalities for higher order fractional derivatives,, \emph{J. Math. Anal. Appl.}, 295 (2004), 225.  doi: 10.1016/j.jmaa.2004.03.034.  Google Scholar

[16]

P. Drabek and S.I. Pohozaev, Positive solutions for the $p$-Laplacian: application of the fibering methods,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 127 (1997), 703.  doi: 10.1017/S0308210500023787.  Google Scholar

[17]

I. Ekeland, On the variational principle,, \emph{J. Math. Anal. Appl.}, 47 (1974), 324.   Google Scholar

[18]

L. Faria, O. Miyagaki, F. Pereira, M. Squassina and C. Zhang, The Brezis-Nirenberg problem for nonlocal systems,, \emph{Adv. Nonlinear Anal.}, 5 (2016), 85.  doi: 10.1515/anona-2015-0114.  Google Scholar

[19]

P. Han, The effect of the domain topology of the number of positive solutions of elliptic systems involving critical Sobolev exponents,, \emph{Houston J. Math.}, 32 (2006), 1241.   Google Scholar

[20]

T. Hsu and H. Lin, Multiple positive solutions for a critical elliptic system with concave-convex nonlinearities,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 139 (2009), 1163.  doi: 10.1017/S0308210508000875.  Google Scholar

[21]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, \emph{Bull. Sci. Math.}, 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[22]

X. Shang, J. Zhang and Y. Yang, Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent,, \emph{Comm. Pure Appl. Anal.}, 13 (2014), 567.  doi: 10.3934/cpaa.2014.13.567.  Google Scholar

[23]

R. Servadei and E. Valdinoci, Mountain pass solutions for nonlinear elliptic operators,, \emph{J. Math. Anal. Appl.}, 389 (2012), 887.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[24]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian,, \emph{Trans. Amer. Math. Soc.}, 367 (2015), 67.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar

[25]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 144 (2014), 831.  doi: 10.1017/S0308210512001783.  Google Scholar

[26]

J. Serra and X. Ros-Oton, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary,, \emph{J. Math. Pures Appl.}, 101 (2014), 275.  doi: 10.1016/j.matpur.2013.06.003.  Google Scholar

[27]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, \emph{Comm. Pure Appl. Math.}, 60 (2007), 67.  doi: 10.1002/cpa.20153.  Google Scholar

[28]

J. Tan, The Brézis-Nirenberg type problem involving the square root of the Laplacian,, \emph{Calc. Var. Partial Differential Equations}, 36 (2011), 21.  doi: 10.1007/s00526-010-0378-3.  Google Scholar

[29]

Y. Wei and X. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian,, \emph{Calc. Var. Partial Differential Equations}, 52 (2015), 95.  doi: 10.1007/s00526-013-0706-5.  Google Scholar

[30]

T.F. Wu, On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function,, \emph{J. Math. Anal. Appl.}, 318 (2006), 253.  doi: 10.1016/j.jmaa.2005.05.057.  Google Scholar

[31]

T.F. Wu, The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions,, \emph{Nonlinear Anal.}, 68 (2008), 1733.  doi: 10.1016/j.na.2007.01.004.  Google Scholar

[32]

X. Yu, The Nehari manifold for elliptic equation involving the square root of the laplacian,, \emph{J. Differential Equations}, 252 (2012), 1283.  doi: 10.1016/j.jde.2011.09.015.  Google Scholar

[1]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021001

[2]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[3]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[4]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[5]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[6]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[7]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[8]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292

[9]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[10]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[11]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[12]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[13]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[14]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, 2021, 20 (2) : 903-914. doi: 10.3934/cpaa.2020296

[15]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[16]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[17]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[18]

Hedy Attouch, Aïcha Balhag, Zaki Chbani, Hassan Riahi. Fast convex optimization via inertial dynamics combining viscous and Hessian-driven damping with time rescaling. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021010

[19]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, 2021, 15 (2) : 315-338. doi: 10.3934/ipi.2020070

[20]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (23)

Other articles
by authors

[Back to Top]