-
Previous Article
Soliton solutions for a quasilinear Schrödinger equation with critical exponent
- CPAA Home
- This Issue
-
Next Article
The lifespan of solutions to semilinear damped wave equations in one space dimension
The Nehari manifold for fractional systems involving critical nonlinearities
1. | College of Science, Minzu University of China, Beijing 100081, China |
2. | Dipartimento di Informatica, Università degli Studi di Verona, Cá Vignal 2, Strada Le Grazie 15, I-37134 Veron |
3. | Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China |
References:
[1] |
C.O. Alves, D.C. de Morais Filho and M.A.S. Souto, On systems of elliptic equations involving subcritical or critical Sobolev exponents,, \emph{Nonlinear Anal.}, 42 (2000), 771.
doi: 10.1016/S0362-546X(99)00121-2. |
[2] |
A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems,, \emph{J. Funct. Anal.}, 122 (1994), 519.
doi: 10.1006/jfan.1994.1078. |
[3] |
B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian,, \emph{J. Differential Equations}, 252 (2012), 6133.
doi: 10.1016/j.jde.2012.02.023. |
[4] |
B. Barrios, E. Colorado, R. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 32 (2015), 875.
doi: 10.1016/j.anihpc.2014.04.003. |
[5] |
C. Brändle, E. Colorado and A. de Pablo, A concave-convex elliptic problem involving the fractional Laplacian,, \emph{Proc. Roy. Soc. Edinburgh Sect. A. Math.}, 142 (2013), 39. Google Scholar |
[6] |
H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437.
doi: 10.1002/cpa.3160360405. |
[7] |
K.J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function,, \emph{J. Differential Equations}, 193 (2003), 481.
doi: 10.1016/S0022-0396(03)00121-9. |
[8] |
X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv. Math.}, 224 (2010), 2052.
doi: 10.1016/j.aim.2010.01.025. |
[9] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm. Partial Differential Equations}, 32 (2007), 1245.
doi: 10.1080/03605300600987306. |
[10] |
A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations,, \emph{Comm. Partial Differential Equations}, 36 (2011), 1353.
doi: 10.1080/03605302.2011.562954. |
[11] |
W. Chen and S. Deng, The Nehari manifold for a nonlinear elliptic operators involving concave-convex nonlinearities,, \emph{Z. Angew. Math. Phys.}, 66 (2015), 1387.
doi: 10.1007/s00033-014-0486-6. |
[12] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 330.
doi: 10.1002/cpa.20116. |
[13] |
X. Cheng and S. Ma, Existence of three nontrivial solutions for elliptic systems with critcal exponents and weights,, \emph{Nonlinear Anal.}, 69 (2008), 3537.
doi: 10.1016/j.na.2007.09.040. |
[14] |
E. Colorado, A. de Pablo and U. Sánchez, Perturbation of a critical fractional equations,, \emph{Pacific J. Math.}, 271 (2014), 65.
doi: 10.2140/pjm.2014.271.65. |
[15] |
A. Cotsiolis and N. Tavoularis, Best constant for Sobolev inequalities for higher order fractional derivatives,, \emph{J. Math. Anal. Appl.}, 295 (2004), 225.
doi: 10.1016/j.jmaa.2004.03.034. |
[16] |
P. Drabek and S.I. Pohozaev, Positive solutions for the $p$-Laplacian: application of the fibering methods,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 127 (1997), 703.
doi: 10.1017/S0308210500023787. |
[17] |
I. Ekeland, On the variational principle,, \emph{J. Math. Anal. Appl.}, 47 (1974), 324.
|
[18] |
L. Faria, O. Miyagaki, F. Pereira, M. Squassina and C. Zhang, The Brezis-Nirenberg problem for nonlocal systems,, \emph{Adv. Nonlinear Anal.}, 5 (2016), 85.
doi: 10.1515/anona-2015-0114. |
[19] |
P. Han, The effect of the domain topology of the number of positive solutions of elliptic systems involving critical Sobolev exponents,, \emph{Houston J. Math.}, 32 (2006), 1241.
|
[20] |
T. Hsu and H. Lin, Multiple positive solutions for a critical elliptic system with concave-convex nonlinearities,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 139 (2009), 1163.
doi: 10.1017/S0308210508000875. |
[21] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, \emph{Bull. Sci. Math.}, 136 (2012), 521.
doi: 10.1016/j.bulsci.2011.12.004. |
[22] |
X. Shang, J. Zhang and Y. Yang, Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent,, \emph{Comm. Pure Appl. Anal.}, 13 (2014), 567.
doi: 10.3934/cpaa.2014.13.567. |
[23] |
R. Servadei and E. Valdinoci, Mountain pass solutions for nonlinear elliptic operators,, \emph{J. Math. Anal. Appl.}, 389 (2012), 887.
doi: 10.1016/j.jmaa.2011.12.032. |
[24] |
R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian,, \emph{Trans. Amer. Math. Soc.}, 367 (2015), 67.
doi: 10.1090/S0002-9947-2014-05884-4. |
[25] |
R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 144 (2014), 831.
doi: 10.1017/S0308210512001783. |
[26] |
J. Serra and X. Ros-Oton, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary,, \emph{J. Math. Pures Appl.}, 101 (2014), 275.
doi: 10.1016/j.matpur.2013.06.003. |
[27] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, \emph{Comm. Pure Appl. Math.}, 60 (2007), 67.
doi: 10.1002/cpa.20153. |
[28] |
J. Tan, The Brézis-Nirenberg type problem involving the square root of the Laplacian,, \emph{Calc. Var. Partial Differential Equations}, 36 (2011), 21.
doi: 10.1007/s00526-010-0378-3. |
[29] |
Y. Wei and X. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian,, \emph{Calc. Var. Partial Differential Equations}, 52 (2015), 95.
doi: 10.1007/s00526-013-0706-5. |
[30] |
T.F. Wu, On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function,, \emph{J. Math. Anal. Appl.}, 318 (2006), 253.
doi: 10.1016/j.jmaa.2005.05.057. |
[31] |
T.F. Wu, The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions,, \emph{Nonlinear Anal.}, 68 (2008), 1733.
doi: 10.1016/j.na.2007.01.004. |
[32] |
X. Yu, The Nehari manifold for elliptic equation involving the square root of the laplacian,, \emph{J. Differential Equations}, 252 (2012), 1283.
doi: 10.1016/j.jde.2011.09.015. |
show all references
References:
[1] |
C.O. Alves, D.C. de Morais Filho and M.A.S. Souto, On systems of elliptic equations involving subcritical or critical Sobolev exponents,, \emph{Nonlinear Anal.}, 42 (2000), 771.
doi: 10.1016/S0362-546X(99)00121-2. |
[2] |
A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems,, \emph{J. Funct. Anal.}, 122 (1994), 519.
doi: 10.1006/jfan.1994.1078. |
[3] |
B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian,, \emph{J. Differential Equations}, 252 (2012), 6133.
doi: 10.1016/j.jde.2012.02.023. |
[4] |
B. Barrios, E. Colorado, R. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 32 (2015), 875.
doi: 10.1016/j.anihpc.2014.04.003. |
[5] |
C. Brändle, E. Colorado and A. de Pablo, A concave-convex elliptic problem involving the fractional Laplacian,, \emph{Proc. Roy. Soc. Edinburgh Sect. A. Math.}, 142 (2013), 39. Google Scholar |
[6] |
H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437.
doi: 10.1002/cpa.3160360405. |
[7] |
K.J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function,, \emph{J. Differential Equations}, 193 (2003), 481.
doi: 10.1016/S0022-0396(03)00121-9. |
[8] |
X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv. Math.}, 224 (2010), 2052.
doi: 10.1016/j.aim.2010.01.025. |
[9] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm. Partial Differential Equations}, 32 (2007), 1245.
doi: 10.1080/03605300600987306. |
[10] |
A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations,, \emph{Comm. Partial Differential Equations}, 36 (2011), 1353.
doi: 10.1080/03605302.2011.562954. |
[11] |
W. Chen and S. Deng, The Nehari manifold for a nonlinear elliptic operators involving concave-convex nonlinearities,, \emph{Z. Angew. Math. Phys.}, 66 (2015), 1387.
doi: 10.1007/s00033-014-0486-6. |
[12] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, \emph{Comm. Pure Appl. Math.}, 59 (2006), 330.
doi: 10.1002/cpa.20116. |
[13] |
X. Cheng and S. Ma, Existence of three nontrivial solutions for elliptic systems with critcal exponents and weights,, \emph{Nonlinear Anal.}, 69 (2008), 3537.
doi: 10.1016/j.na.2007.09.040. |
[14] |
E. Colorado, A. de Pablo and U. Sánchez, Perturbation of a critical fractional equations,, \emph{Pacific J. Math.}, 271 (2014), 65.
doi: 10.2140/pjm.2014.271.65. |
[15] |
A. Cotsiolis and N. Tavoularis, Best constant for Sobolev inequalities for higher order fractional derivatives,, \emph{J. Math. Anal. Appl.}, 295 (2004), 225.
doi: 10.1016/j.jmaa.2004.03.034. |
[16] |
P. Drabek and S.I. Pohozaev, Positive solutions for the $p$-Laplacian: application of the fibering methods,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 127 (1997), 703.
doi: 10.1017/S0308210500023787. |
[17] |
I. Ekeland, On the variational principle,, \emph{J. Math. Anal. Appl.}, 47 (1974), 324.
|
[18] |
L. Faria, O. Miyagaki, F. Pereira, M. Squassina and C. Zhang, The Brezis-Nirenberg problem for nonlocal systems,, \emph{Adv. Nonlinear Anal.}, 5 (2016), 85.
doi: 10.1515/anona-2015-0114. |
[19] |
P. Han, The effect of the domain topology of the number of positive solutions of elliptic systems involving critical Sobolev exponents,, \emph{Houston J. Math.}, 32 (2006), 1241.
|
[20] |
T. Hsu and H. Lin, Multiple positive solutions for a critical elliptic system with concave-convex nonlinearities,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 139 (2009), 1163.
doi: 10.1017/S0308210508000875. |
[21] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, \emph{Bull. Sci. Math.}, 136 (2012), 521.
doi: 10.1016/j.bulsci.2011.12.004. |
[22] |
X. Shang, J. Zhang and Y. Yang, Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent,, \emph{Comm. Pure Appl. Anal.}, 13 (2014), 567.
doi: 10.3934/cpaa.2014.13.567. |
[23] |
R. Servadei and E. Valdinoci, Mountain pass solutions for nonlinear elliptic operators,, \emph{J. Math. Anal. Appl.}, 389 (2012), 887.
doi: 10.1016/j.jmaa.2011.12.032. |
[24] |
R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian,, \emph{Trans. Amer. Math. Soc.}, 367 (2015), 67.
doi: 10.1090/S0002-9947-2014-05884-4. |
[25] |
R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 144 (2014), 831.
doi: 10.1017/S0308210512001783. |
[26] |
J. Serra and X. Ros-Oton, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary,, \emph{J. Math. Pures Appl.}, 101 (2014), 275.
doi: 10.1016/j.matpur.2013.06.003. |
[27] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, \emph{Comm. Pure Appl. Math.}, 60 (2007), 67.
doi: 10.1002/cpa.20153. |
[28] |
J. Tan, The Brézis-Nirenberg type problem involving the square root of the Laplacian,, \emph{Calc. Var. Partial Differential Equations}, 36 (2011), 21.
doi: 10.1007/s00526-010-0378-3. |
[29] |
Y. Wei and X. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian,, \emph{Calc. Var. Partial Differential Equations}, 52 (2015), 95.
doi: 10.1007/s00526-013-0706-5. |
[30] |
T.F. Wu, On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function,, \emph{J. Math. Anal. Appl.}, 318 (2006), 253.
doi: 10.1016/j.jmaa.2005.05.057. |
[31] |
T.F. Wu, The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions,, \emph{Nonlinear Anal.}, 68 (2008), 1733.
doi: 10.1016/j.na.2007.01.004. |
[32] |
X. Yu, The Nehari manifold for elliptic equation involving the square root of the laplacian,, \emph{J. Differential Equations}, 252 (2012), 1283.
doi: 10.1016/j.jde.2011.09.015. |
[1] |
Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021001 |
[2] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[3] |
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021001 |
[4] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
[5] |
Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020379 |
[6] |
Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011 |
[7] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[8] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292 |
[9] |
Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020452 |
[10] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[11] |
Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306 |
[12] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 |
[13] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[14] |
Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, 2021, 20 (2) : 903-914. doi: 10.3934/cpaa.2020296 |
[15] |
Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101 |
[16] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[17] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[18] |
Hedy Attouch, Aïcha Balhag, Zaki Chbani, Hassan Riahi. Fast convex optimization via inertial dynamics combining viscous and Hessian-driven damping with time rescaling. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021010 |
[19] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, 2021, 15 (2) : 315-338. doi: 10.3934/ipi.2020070 |
[20] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]