-
Previous Article
Higher integrability of weak solution of a nonlinear problem arising in the electrorheological fluids
- CPAA Home
- This Issue
-
Next Article
The Nehari manifold for fractional systems involving critical nonlinearities
Soliton solutions for a quasilinear Schrödinger equation with critical exponent
1. | Department of Mathematics, Central China Normal University, Wuhan, 430079, China |
2. | Department of Mathematics, Wuhan University of Technology, Wuhan, 430070, China |
References:
[1] |
J. Func. Anal., 14 (1973), 349-381.
doi: 10.1016/0022-1236(73)90051-7. |
[2] |
Comm. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405. |
[3] |
J. Differential Equations, 248 (2010), 722-744.
doi: 10.1016/j.jde.2009.11.030. |
[4] |
Phys. Fluids B, 5 (1993), 3539-3550.
doi: 10.1063/1.860828. |
[5] |
Phys. Rep., 189 (1990), 165-223.
doi: 10.1016/0370-1573(90)90093-H. |
[6] |
Exposition. Math., 4 (1986), 279-288. |
[7] |
Phys. Rev. Lett., 70 (1993), 2082-2085.
doi: 10.1103/PhysRevLett.70.2082. |
[8] |
Nonlinear Anal. TMA., 56 (2004), 213-226.
doi: 10.1016/j.na.2003.09.008. |
[9] |
Physica D, 238 (2009), 38-54.
doi: 10.1016/j.physd.2008.08.010. |
[10] |
Commun. Math. Phys., 189 (1997), 73-105.
doi: 10.1007/s002200050191. |
[11] |
J. Math. Phys., 54 (2013), 011504, 27pp.
doi: 10.1063/1.4774153. |
[12] |
Commun. Math. Sci., 9 (2011), 859-878.
doi: 10.4310/CMS.2011.v9.n3.a9. |
[13] |
J. Differential Equations, 258 (2015), 115-147.
doi: 10.1016/j.jde.2014.09.006. |
[14] |
J. Differential Equations, 260 (2016), 1228-1262.
doi: 10.1016/j.jde.2015.09.021. |
[15] |
Courant Lecture Notes in Mathematics, vol. 1. New York University Courant Institute of Mathematical Sciences, New York, 1997. |
[16] |
Z. Phys. B, 37 (1980), 83-87. Google Scholar |
[17] |
Phys. Rep., 194 (1990), 117-238.
doi: doi:10.1016/0370-1573(90)90130-T. |
[18] |
J. Phys. Soc. Japan, 50 (1981), 3262-3267.
doi: 10.1143/JPSJ.50.3262. |
[19] |
J. Math. Phys., 24 (1983), 2764-2769.
doi: 10.1063/1.525675. |
[20] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145. |
[21] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283. |
[22] |
Comm. Partial Differential Equations, 24 (1999), 1399-1418.
doi: 10.1080/03605309908821469. |
[23] |
J. Differential Equations, 187 (2003), 473-493.
doi: 10.1016/S0022-0396(02)00064-5. |
[24] |
Comm. Partial Differential Equations, 29 (2004), 879-901.
doi: 10.1081/PDE-120037335. |
[25] |
Proc. Amer. Math. Soc., 131 (2003), 441-448.
doi: 10.1090/S0002-9939-02-06783-7 . |
[26] |
Proc. Amer. Math. Soc., 141 (2013), 253-263.
doi: 10.1090/S0002-9939-2012-11293-6 . |
[27] |
J. Differential Equations, 254 (2013), 102-124.
doi: 10.1016/j.jde.2012.09.006. |
[28] |
Calc. Var. Partial Differential Equations, 46 (2013), 641-669.
doi: 10.1007/s00526-012-0497-0. |
[29] |
J. Differential Equations, 229 (2006), 570-587.
doi: 10.1016/j.jde.2006.07.001. |
[30] |
Phys. Rep., 104 (1984), 1-86.
doi: 10.1016/0370-1573(84)90106-6. |
[31] |
Indiana Univ. Math. J., 35 (1986), 681-703.
doi: 10.1512/iumj.1986.35.35036. |
[32] |
Calc. Var. Partial Differential Equations, 14 (2002), 329-344.
doi: 10.1007/s005260100105. |
[33] |
Phys. A, 110 (1982), 41-80.
doi: 10.1016/0378-4371(82)90104-2. |
[34] |
Phys. Rev. E, 50 (1994), 687-689.
doi: 10.1103/PhysRevE.50.R687. |
[35] |
Nonlinear Anal. TMA., 80 (2013), 194-201.
doi: 10.1016/j.na.2012.10.005. |
[36] |
Calc. Var. Partial Differential Equations, 39 (2010), 1-33.
doi: 10.1007/s00526-009-0299-1. |
[37] |
J. Math. Phys., 54 (2013), 071502, 19pp.
doi: 10.1063/1.4811394. |
show all references
References:
[1] |
J. Func. Anal., 14 (1973), 349-381.
doi: 10.1016/0022-1236(73)90051-7. |
[2] |
Comm. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405. |
[3] |
J. Differential Equations, 248 (2010), 722-744.
doi: 10.1016/j.jde.2009.11.030. |
[4] |
Phys. Fluids B, 5 (1993), 3539-3550.
doi: 10.1063/1.860828. |
[5] |
Phys. Rep., 189 (1990), 165-223.
doi: 10.1016/0370-1573(90)90093-H. |
[6] |
Exposition. Math., 4 (1986), 279-288. |
[7] |
Phys. Rev. Lett., 70 (1993), 2082-2085.
doi: 10.1103/PhysRevLett.70.2082. |
[8] |
Nonlinear Anal. TMA., 56 (2004), 213-226.
doi: 10.1016/j.na.2003.09.008. |
[9] |
Physica D, 238 (2009), 38-54.
doi: 10.1016/j.physd.2008.08.010. |
[10] |
Commun. Math. Phys., 189 (1997), 73-105.
doi: 10.1007/s002200050191. |
[11] |
J. Math. Phys., 54 (2013), 011504, 27pp.
doi: 10.1063/1.4774153. |
[12] |
Commun. Math. Sci., 9 (2011), 859-878.
doi: 10.4310/CMS.2011.v9.n3.a9. |
[13] |
J. Differential Equations, 258 (2015), 115-147.
doi: 10.1016/j.jde.2014.09.006. |
[14] |
J. Differential Equations, 260 (2016), 1228-1262.
doi: 10.1016/j.jde.2015.09.021. |
[15] |
Courant Lecture Notes in Mathematics, vol. 1. New York University Courant Institute of Mathematical Sciences, New York, 1997. |
[16] |
Z. Phys. B, 37 (1980), 83-87. Google Scholar |
[17] |
Phys. Rep., 194 (1990), 117-238.
doi: doi:10.1016/0370-1573(90)90130-T. |
[18] |
J. Phys. Soc. Japan, 50 (1981), 3262-3267.
doi: 10.1143/JPSJ.50.3262. |
[19] |
J. Math. Phys., 24 (1983), 2764-2769.
doi: 10.1063/1.525675. |
[20] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145. |
[21] |
Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283. |
[22] |
Comm. Partial Differential Equations, 24 (1999), 1399-1418.
doi: 10.1080/03605309908821469. |
[23] |
J. Differential Equations, 187 (2003), 473-493.
doi: 10.1016/S0022-0396(02)00064-5. |
[24] |
Comm. Partial Differential Equations, 29 (2004), 879-901.
doi: 10.1081/PDE-120037335. |
[25] |
Proc. Amer. Math. Soc., 131 (2003), 441-448.
doi: 10.1090/S0002-9939-02-06783-7 . |
[26] |
Proc. Amer. Math. Soc., 141 (2013), 253-263.
doi: 10.1090/S0002-9939-2012-11293-6 . |
[27] |
J. Differential Equations, 254 (2013), 102-124.
doi: 10.1016/j.jde.2012.09.006. |
[28] |
Calc. Var. Partial Differential Equations, 46 (2013), 641-669.
doi: 10.1007/s00526-012-0497-0. |
[29] |
J. Differential Equations, 229 (2006), 570-587.
doi: 10.1016/j.jde.2006.07.001. |
[30] |
Phys. Rep., 104 (1984), 1-86.
doi: 10.1016/0370-1573(84)90106-6. |
[31] |
Indiana Univ. Math. J., 35 (1986), 681-703.
doi: 10.1512/iumj.1986.35.35036. |
[32] |
Calc. Var. Partial Differential Equations, 14 (2002), 329-344.
doi: 10.1007/s005260100105. |
[33] |
Phys. A, 110 (1982), 41-80.
doi: 10.1016/0378-4371(82)90104-2. |
[34] |
Phys. Rev. E, 50 (1994), 687-689.
doi: 10.1103/PhysRevE.50.R687. |
[35] |
Nonlinear Anal. TMA., 80 (2013), 194-201.
doi: 10.1016/j.na.2012.10.005. |
[36] |
Calc. Var. Partial Differential Equations, 39 (2010), 1-33.
doi: 10.1007/s00526-009-0299-1. |
[37] |
J. Math. Phys., 54 (2013), 071502, 19pp.
doi: 10.1063/1.4811394. |
[1] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[2] |
Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021038 |
[3] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[4] |
Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021061 |
[5] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
[6] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[7] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[8] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[9] |
Fangyi Qin, Jun Wang, Jing Yang. Infinitely many positive solutions for Schrödinger-poisson systems with nonsymmetry potentials. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021054 |
[10] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[11] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[12] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021031 |
[13] |
Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021115 |
[14] |
Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021030 |
[15] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[16] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[17] |
Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021024 |
[18] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376 |
[19] |
Yosra Soussi. Stable recovery of a non-compactly supported coefficient of a Schrödinger equation on an infinite waveguide. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021022 |
[20] |
Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021047 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]