July  2016, 15(4): 1309-1333. doi: 10.3934/cpaa.2016.15.1309

Soliton solutions for a quasilinear Schrödinger equation with critical exponent

1. 

Department of Mathematics, Central China Normal University, Wuhan, 430079, China

2. 

Department of Mathematics, Wuhan University of Technology, Wuhan, 430070, China

Received  October 2015 Revised  January 2016 Published  April 2016

This paper is concerned with the existence of soliton solutions for a quasilinear Schrödinger equation in $R^N$ with critical exponent, which appears from modelling the self-channeling of a high-power ultrashort laser in matter. By working with a perturbation approach which was initially proposed in [26], we prove that the given problem has a positive ground state solution.
Citation: Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7.

[2]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. doi: 10.1002/cpa.3160360405.

[3]

João M. Bezerra do Ó, Olímpio H. Miyagaki and Sérgio H.M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744. doi: 10.1016/j.jde.2009.11.030.

[4]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550. doi: 10.1063/1.860828.

[5]

F.G. Bass and N.N. Nasanov, Nonlinear electromagnetic-spin waves, Phys. Rep., 189 (1990), 165-223. doi: 10.1016/0370-1573(90)90093-H.

[6]

L. Brüll and H. Lange, Solitary waves for quasilinear Schrödinger equations, Exposition. Math., 4 (1986), 279-288.

[7]

X.L. Chen and R.N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett., 70 (1993), 2082-2085. doi: 10.1103/PhysRevLett.70.2082.

[8]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal. TMA., 56 (2004), 213-226. doi: 10.1016/j.na.2003.09.008.

[9]

S. Cuccagna, On instability of excited states of the nonlinear Schrödinger equation, Physica D, 238 (2009), 38-54. doi: 10.1016/j.physd.2008.08.010.

[10]

A. De Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Commun. Math. Phys., 189 (1997), 73-105. doi: 10.1007/s002200050191.

[11]

Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent, J. Math. Phys., 54 (2013), 011504, 27pp. doi: 10.1063/1.4774153.

[12]

Y. Deng, S. Peng and J. Wang, Infinitely many sign-changing solutions for quasilinear Schrödinger equations in $R^N$, Commun. Math. Sci., 9 (2011), 859-878. doi: 10.4310/CMS.2011.v9.n3.a9.

[13]

Y. Deng, S. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015), 115-147. doi: 10.1016/j.jde.2014.09.006.

[14]

Y. Deng, S. Peng and S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differential Equations, 260 (2016), 1228-1262. doi: 10.1016/j.jde.2015.09.021.

[15]

Q. Han and F. Lin, Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, vol. 1. New York University Courant Institute of Mathematical Sciences, New York, 1997.

[16]

R.W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B, 37 (1980), 83-87.

[17]

A.M. Kosevich, B.A. Ivanov and A.S. Kovalev, Magnetic solitons, Phys. Rep., 194 (1990), 117-238. doi: doi:10.1016/0370-1573(90)90130-T.

[18]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267. doi: 10.1143/JPSJ.50.3262.

[19]

E. Laedke, K. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769. doi: 10.1063/1.525675.

[20]

P.L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, part I}, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.

[21]

P.L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, part II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.

[22]

H. Lange, M. Poppenberg and H. Teismann, Nash-Moser methods for the solution of quasilinear Schrödinger equations, Comm. Partial Differential Equations, 24 (1999), 1399-1418. doi: 10.1080/03605309908821469.

[23]

J. Liu, Y. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II, J. Differential Equations, 187 (2003), 473-493. doi: 10.1016/S0022-0396(02)00064-5.

[24]

J. Liu, Y. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879-901. doi: 10.1081/PDE-120037335.

[25]

J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I, Proc. Amer. Math. Soc., 131 (2003), 441-448. doi: 10.1090/S0002-9939-02-06783-7 .

[26]

X. Liu, J. Liu and Z. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263. doi: 10.1090/S0002-9939-2012-11293-6 .

[27]

X. Liu, J. Liu and Z. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations, 254 (2013), 102-124. doi: 10.1016/j.jde.2012.09.006.

[28]

X. Liu, J. Liu and Z. Wang, Ground states for quasilinear Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 46 (2013), 641-669. doi: 10.1007/s00526-012-0497-0.

[29]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $R^N$, J. Differential Equations, 229 (2006), 570-587. doi: 10.1016/j.jde.2006.07.001.

[30]

V.G. Makhankov and V.K. Fedyanin, Nonlinear effects in quasi-one-dimensional models and condensed matter theory, Phys. Rep., 104 (1984), 1-86. doi: 10.1016/0370-1573(84)90106-6.

[31]

P. Pucci and J. Serrin, A general variational idnetity, Indiana Univ. Math. J., 35 (1986), 681-703. doi: 10.1512/iumj.1986.35.35036.

[32]

M. Poppenberg, K. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344. doi: 10.1007/s005260100105.

[33]

G.R.W. Quispel and H.W. Capel, Equation of motion for the Heisenberg spin chain, Phys. A, 110 (1982), 41-80. doi: 10.1016/0378-4371(82)90104-2.

[34]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689. doi: 10.1103/PhysRevE.50.R687.

[35]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. TMA., 80 (2013), 194-201. doi: 10.1016/j.na.2012.10.005.

[36]

E.A.B. Silva and G.F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33. doi: 10.1007/s00526-009-0299-1.

[37]

J. Yang, Y. Wang and A.A. Abdelgadir, Soliton solutions for quasilinear Schrödinger equations, J. Math. Phys., 54 (2013), 071502, 19pp. doi: 10.1063/1.4811394.

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7.

[2]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. doi: 10.1002/cpa.3160360405.

[3]

João M. Bezerra do Ó, Olímpio H. Miyagaki and Sérgio H.M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744. doi: 10.1016/j.jde.2009.11.030.

[4]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550. doi: 10.1063/1.860828.

[5]

F.G. Bass and N.N. Nasanov, Nonlinear electromagnetic-spin waves, Phys. Rep., 189 (1990), 165-223. doi: 10.1016/0370-1573(90)90093-H.

[6]

L. Brüll and H. Lange, Solitary waves for quasilinear Schrödinger equations, Exposition. Math., 4 (1986), 279-288.

[7]

X.L. Chen and R.N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett., 70 (1993), 2082-2085. doi: 10.1103/PhysRevLett.70.2082.

[8]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal. TMA., 56 (2004), 213-226. doi: 10.1016/j.na.2003.09.008.

[9]

S. Cuccagna, On instability of excited states of the nonlinear Schrödinger equation, Physica D, 238 (2009), 38-54. doi: 10.1016/j.physd.2008.08.010.

[10]

A. De Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Commun. Math. Phys., 189 (1997), 73-105. doi: 10.1007/s002200050191.

[11]

Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent, J. Math. Phys., 54 (2013), 011504, 27pp. doi: 10.1063/1.4774153.

[12]

Y. Deng, S. Peng and J. Wang, Infinitely many sign-changing solutions for quasilinear Schrödinger equations in $R^N$, Commun. Math. Sci., 9 (2011), 859-878. doi: 10.4310/CMS.2011.v9.n3.a9.

[13]

Y. Deng, S. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015), 115-147. doi: 10.1016/j.jde.2014.09.006.

[14]

Y. Deng, S. Peng and S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differential Equations, 260 (2016), 1228-1262. doi: 10.1016/j.jde.2015.09.021.

[15]

Q. Han and F. Lin, Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, vol. 1. New York University Courant Institute of Mathematical Sciences, New York, 1997.

[16]

R.W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B, 37 (1980), 83-87.

[17]

A.M. Kosevich, B.A. Ivanov and A.S. Kovalev, Magnetic solitons, Phys. Rep., 194 (1990), 117-238. doi: doi:10.1016/0370-1573(90)90130-T.

[18]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267. doi: 10.1143/JPSJ.50.3262.

[19]

E. Laedke, K. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769. doi: 10.1063/1.525675.

[20]

P.L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, part I}, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.

[21]

P.L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, part II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.

[22]

H. Lange, M. Poppenberg and H. Teismann, Nash-Moser methods for the solution of quasilinear Schrödinger equations, Comm. Partial Differential Equations, 24 (1999), 1399-1418. doi: 10.1080/03605309908821469.

[23]

J. Liu, Y. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II, J. Differential Equations, 187 (2003), 473-493. doi: 10.1016/S0022-0396(02)00064-5.

[24]

J. Liu, Y. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879-901. doi: 10.1081/PDE-120037335.

[25]

J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I, Proc. Amer. Math. Soc., 131 (2003), 441-448. doi: 10.1090/S0002-9939-02-06783-7 .

[26]

X. Liu, J. Liu and Z. Wang, Quasilinear elliptic equations via perturbation method, Proc. Amer. Math. Soc., 141 (2013), 253-263. doi: 10.1090/S0002-9939-2012-11293-6 .

[27]

X. Liu, J. Liu and Z. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations, 254 (2013), 102-124. doi: 10.1016/j.jde.2012.09.006.

[28]

X. Liu, J. Liu and Z. Wang, Ground states for quasilinear Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 46 (2013), 641-669. doi: 10.1007/s00526-012-0497-0.

[29]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $R^N$, J. Differential Equations, 229 (2006), 570-587. doi: 10.1016/j.jde.2006.07.001.

[30]

V.G. Makhankov and V.K. Fedyanin, Nonlinear effects in quasi-one-dimensional models and condensed matter theory, Phys. Rep., 104 (1984), 1-86. doi: 10.1016/0370-1573(84)90106-6.

[31]

P. Pucci and J. Serrin, A general variational idnetity, Indiana Univ. Math. J., 35 (1986), 681-703. doi: 10.1512/iumj.1986.35.35036.

[32]

M. Poppenberg, K. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344. doi: 10.1007/s005260100105.

[33]

G.R.W. Quispel and H.W. Capel, Equation of motion for the Heisenberg spin chain, Phys. A, 110 (1982), 41-80. doi: 10.1016/0378-4371(82)90104-2.

[34]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689. doi: 10.1103/PhysRevE.50.R687.

[35]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. TMA., 80 (2013), 194-201. doi: 10.1016/j.na.2012.10.005.

[36]

E.A.B. Silva and G.F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33. doi: 10.1007/s00526-009-0299-1.

[37]

J. Yang, Y. Wang and A.A. Abdelgadir, Soliton solutions for quasilinear Schrödinger equations, J. Math. Phys., 54 (2013), 071502, 19pp. doi: 10.1063/1.4811394.

[1]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[2]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[3]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[4]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[5]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[6]

Xiang-Dong Fang. A positive solution for an asymptotically cubic quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (1) : 51-64. doi: 10.3934/cpaa.2019004

[7]

Jianhua Chen, Xianhua Tang, Bitao Cheng. Existence of ground state solutions for a class of quasilinear Schrödinger equations with general critical nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 493-517. doi: 10.3934/cpaa.2019025

[8]

Yanfang Xue, Chunlei Tang. Ground state solutions for asymptotically periodic quasilinear Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1121-1145. doi: 10.3934/cpaa.2018054

[9]

GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803

[10]

Gui-Dong Li, Chun-Lei Tang. Existence of positive ground state solutions for Choquard equation with variable exponent growth. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2035-2050. doi: 10.3934/dcdss.2019131

[11]

Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283

[12]

Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235

[13]

Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026

[14]

Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure and Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048

[15]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[16]

Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$ \ddot{\mbox{o}} $dinger-Poisson system involving critical exponent. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104

[17]

Guofa Li, Yisheng Huang. Positive solutions for critical quasilinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3971-3989. doi: 10.3934/dcdsb.2021214

[18]

Qian Shen, Na Wei. Stability of ground state for the Schrödinger-Poisson equation. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2805-2816. doi: 10.3934/jimo.2020095

[19]

Yu Su, Zhaosheng Feng. Ground state solutions and decay estimation of Choquard equation with critical exponent and Dipole potential. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022112

[20]

Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (210)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]