July  2016, 15(4): 1309-1333. doi: 10.3934/cpaa.2016.15.1309

Soliton solutions for a quasilinear Schrödinger equation with critical exponent

1. 

Department of Mathematics, Central China Normal University, Wuhan, 430079, China

2. 

Department of Mathematics, Wuhan University of Technology, Wuhan, 430070, China

Received  October 2015 Revised  January 2016 Published  April 2016

This paper is concerned with the existence of soliton solutions for a quasilinear Schrödinger equation in $R^N$ with critical exponent, which appears from modelling the self-channeling of a high-power ultrashort laser in matter. By working with a perturbation approach which was initially proposed in [26], we prove that the given problem has a positive ground state solution.
Citation: Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Func. Anal.}, 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[3]

João M. Bezerra do Ó, Olímpio H. Miyagaki and Sérgio H.M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth,, \emph{J. Differential Equations}, 248 (2010), 722.  doi: 10.1016/j.jde.2009.11.030.  Google Scholar

[4]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma,, \emph{Phys. Fluids B}, 5 (1993), 3539.  doi: 10.1063/1.860828.  Google Scholar

[5]

F.G. Bass and N.N. Nasanov, Nonlinear electromagnetic-spin waves,, \emph{Phys. Rep.}, 189 (1990), 165.  doi: 10.1016/0370-1573(90)90093-H.  Google Scholar

[6]

L. Brüll and H. Lange, Solitary waves for quasilinear Schrödinger equations,, \emph{Exposition. Math.}, 4 (1986), 279.   Google Scholar

[7]

X.L. Chen and R.N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma,, \emph{Phys. Rev. Lett.}, 70 (1993), 2082.  doi: 10.1103/PhysRevLett.70.2082.  Google Scholar

[8]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach,, \emph{Nonlinear Anal. TMA.}, 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[9]

S. Cuccagna, On instability of excited states of the nonlinear Schrödinger equation,, \emph{Physica D}, 238 (2009), 38.  doi: 10.1016/j.physd.2008.08.010.  Google Scholar

[10]

A. De Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation,, \emph{Commun. Math. Phys.}, 189 (1997), 73.  doi: 10.1007/s002200050191.  Google Scholar

[11]

Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent,, \emph{J. Math. Phys.}, 54 (2013).  doi: 10.1063/1.4774153.  Google Scholar

[12]

Y. Deng, S. Peng and J. Wang, Infinitely many sign-changing solutions for quasilinear Schrödinger equations in $R^N$,, \emph{Commun. Math. Sci.}, 9 (2011), 859.  doi: 10.4310/CMS.2011.v9.n3.a9.  Google Scholar

[13]

Y. Deng, S. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth,, \emph{J. Differential Equations}, 258 (2015), 115.  doi: 10.1016/j.jde.2014.09.006.  Google Scholar

[14]

Y. Deng, S. Peng and S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations,, \emph{J. Differential Equations}, 260 (2016), 1228.  doi: 10.1016/j.jde.2015.09.021.  Google Scholar

[15]

Q. Han and F. Lin, Elliptic Partial Differential Equations,, Courant Lecture Notes in Mathematics, (1997).   Google Scholar

[16]

R.W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations,, \emph{Z. Phys. B}, 37 (1980), 83.   Google Scholar

[17]

A.M. Kosevich, B.A. Ivanov and A.S. Kovalev, Magnetic solitons,, \emph{Phys. Rep.}, 194 (1990), 117.  doi: doi:10.1016/0370-1573(90)90130-T.  Google Scholar

[18]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, \emph{J. Phys. Soc. Japan}, 50 (1981), 3262.  doi: 10.1143/JPSJ.50.3262.  Google Scholar

[19]

E. Laedke, K. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions,, \emph{J. Math. Phys.}, 24 (1983), 2764.  doi: 10.1063/1.525675.  Google Scholar

[20]

P.L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, part I},, \emph{Ann. Inst. H. Poincar$\acutee$ Anal. Non Lin$\acutee$aire}, 1 (1984), 109.   Google Scholar

[21]

P.L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, part II,, \emph{Ann. Inst. H. Poincar$\acutee$ Anal. Non Lin$\acutee$aire}, 1 (1984), 223.   Google Scholar

[22]

H. Lange, M. Poppenberg and H. Teismann, Nash-Moser methods for the solution of quasilinear Schrödinger equations,, \emph{Comm. Partial Differential Equations}, 24 (1999), 1399.  doi: 10.1080/03605309908821469.  Google Scholar

[23]

J. Liu, Y. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II,, \emph{J. Differential Equations}, 187 (2003), 473.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[24]

J. Liu, Y. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, \emph{Comm. Partial Differential Equations}, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[25]

J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I,, \emph{Proc. Amer. Math. Soc.}, 131 (2003), 441.  doi: 10.1090/S0002-9939-02-06783-7 .  Google Scholar

[26]

X. Liu, J. Liu and Z. Wang, Quasilinear elliptic equations via perturbation method,, \emph{Proc. Amer. Math. Soc.}, 141 (2013), 253.  doi: 10.1090/S0002-9939-2012-11293-6 .  Google Scholar

[27]

X. Liu, J. Liu and Z. Wang, Quasilinear elliptic equations with critical growth via perturbation method,, \emph{J. Differential Equations}, 254 (2013), 102.  doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[28]

X. Liu, J. Liu and Z. Wang, Ground states for quasilinear Schrödinger equations with critical growth,, \emph{Calc. Var. Partial Differential Equations}, 46 (2013), 641.  doi: 10.1007/s00526-012-0497-0.  Google Scholar

[29]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $R^N$,, \emph{J. Differential Equations}, 229 (2006), 570.  doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[30]

V.G. Makhankov and V.K. Fedyanin, Nonlinear effects in quasi-one-dimensional models and condensed matter theory,, \emph{Phys. Rep.}, 104 (1984), 1.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[31]

P. Pucci and J. Serrin, A general variational idnetity,, \emph{Indiana Univ. Math. J.}, 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[32]

M. Poppenberg, K. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, \emph{Calc. Var. Partial Differential Equations}, 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[33]

G.R.W. Quispel and H.W. Capel, Equation of motion for the Heisenberg spin chain,, \emph{Phys. A}, 110 (1982), 41.  doi: 10.1016/0378-4371(82)90104-2.  Google Scholar

[34]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions,, \emph{Phys. Rev. E}, 50 (1994), 687.  doi: 10.1103/PhysRevE.50.R687.  Google Scholar

[35]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations,, \emph{Nonlinear Anal. TMA.}, 80 (2013), 194.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[36]

E.A.B. Silva and G.F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth,, \emph{Calc. Var. Partial Differential Equations}, 39 (2010), 1.  doi: 10.1007/s00526-009-0299-1.  Google Scholar

[37]

J. Yang, Y. Wang and A.A. Abdelgadir, Soliton solutions for quasilinear Schrödinger equations,, \emph{J. Math. Phys.}, 54 (2013).  doi: 10.1063/1.4811394.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Func. Anal.}, 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[3]

João M. Bezerra do Ó, Olímpio H. Miyagaki and Sérgio H.M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth,, \emph{J. Differential Equations}, 248 (2010), 722.  doi: 10.1016/j.jde.2009.11.030.  Google Scholar

[4]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma,, \emph{Phys. Fluids B}, 5 (1993), 3539.  doi: 10.1063/1.860828.  Google Scholar

[5]

F.G. Bass and N.N. Nasanov, Nonlinear electromagnetic-spin waves,, \emph{Phys. Rep.}, 189 (1990), 165.  doi: 10.1016/0370-1573(90)90093-H.  Google Scholar

[6]

L. Brüll and H. Lange, Solitary waves for quasilinear Schrödinger equations,, \emph{Exposition. Math.}, 4 (1986), 279.   Google Scholar

[7]

X.L. Chen and R.N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma,, \emph{Phys. Rev. Lett.}, 70 (1993), 2082.  doi: 10.1103/PhysRevLett.70.2082.  Google Scholar

[8]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach,, \emph{Nonlinear Anal. TMA.}, 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[9]

S. Cuccagna, On instability of excited states of the nonlinear Schrödinger equation,, \emph{Physica D}, 238 (2009), 38.  doi: 10.1016/j.physd.2008.08.010.  Google Scholar

[10]

A. De Bouard, N. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation,, \emph{Commun. Math. Phys.}, 189 (1997), 73.  doi: 10.1007/s002200050191.  Google Scholar

[11]

Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent,, \emph{J. Math. Phys.}, 54 (2013).  doi: 10.1063/1.4774153.  Google Scholar

[12]

Y. Deng, S. Peng and J. Wang, Infinitely many sign-changing solutions for quasilinear Schrödinger equations in $R^N$,, \emph{Commun. Math. Sci.}, 9 (2011), 859.  doi: 10.4310/CMS.2011.v9.n3.a9.  Google Scholar

[13]

Y. Deng, S. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth,, \emph{J. Differential Equations}, 258 (2015), 115.  doi: 10.1016/j.jde.2014.09.006.  Google Scholar

[14]

Y. Deng, S. Peng and S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations,, \emph{J. Differential Equations}, 260 (2016), 1228.  doi: 10.1016/j.jde.2015.09.021.  Google Scholar

[15]

Q. Han and F. Lin, Elliptic Partial Differential Equations,, Courant Lecture Notes in Mathematics, (1997).   Google Scholar

[16]

R.W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations,, \emph{Z. Phys. B}, 37 (1980), 83.   Google Scholar

[17]

A.M. Kosevich, B.A. Ivanov and A.S. Kovalev, Magnetic solitons,, \emph{Phys. Rep.}, 194 (1990), 117.  doi: doi:10.1016/0370-1573(90)90130-T.  Google Scholar

[18]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films,, \emph{J. Phys. Soc. Japan}, 50 (1981), 3262.  doi: 10.1143/JPSJ.50.3262.  Google Scholar

[19]

E. Laedke, K. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions,, \emph{J. Math. Phys.}, 24 (1983), 2764.  doi: 10.1063/1.525675.  Google Scholar

[20]

P.L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, part I},, \emph{Ann. Inst. H. Poincar$\acutee$ Anal. Non Lin$\acutee$aire}, 1 (1984), 109.   Google Scholar

[21]

P.L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, part II,, \emph{Ann. Inst. H. Poincar$\acutee$ Anal. Non Lin$\acutee$aire}, 1 (1984), 223.   Google Scholar

[22]

H. Lange, M. Poppenberg and H. Teismann, Nash-Moser methods for the solution of quasilinear Schrödinger equations,, \emph{Comm. Partial Differential Equations}, 24 (1999), 1399.  doi: 10.1080/03605309908821469.  Google Scholar

[23]

J. Liu, Y. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. II,, \emph{J. Differential Equations}, 187 (2003), 473.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[24]

J. Liu, Y. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method,, \emph{Comm. Partial Differential Equations}, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[25]

J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I,, \emph{Proc. Amer. Math. Soc.}, 131 (2003), 441.  doi: 10.1090/S0002-9939-02-06783-7 .  Google Scholar

[26]

X. Liu, J. Liu and Z. Wang, Quasilinear elliptic equations via perturbation method,, \emph{Proc. Amer. Math. Soc.}, 141 (2013), 253.  doi: 10.1090/S0002-9939-2012-11293-6 .  Google Scholar

[27]

X. Liu, J. Liu and Z. Wang, Quasilinear elliptic equations with critical growth via perturbation method,, \emph{J. Differential Equations}, 254 (2013), 102.  doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[28]

X. Liu, J. Liu and Z. Wang, Ground states for quasilinear Schrödinger equations with critical growth,, \emph{Calc. Var. Partial Differential Equations}, 46 (2013), 641.  doi: 10.1007/s00526-012-0497-0.  Google Scholar

[29]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $R^N$,, \emph{J. Differential Equations}, 229 (2006), 570.  doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[30]

V.G. Makhankov and V.K. Fedyanin, Nonlinear effects in quasi-one-dimensional models and condensed matter theory,, \emph{Phys. Rep.}, 104 (1984), 1.  doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[31]

P. Pucci and J. Serrin, A general variational idnetity,, \emph{Indiana Univ. Math. J.}, 35 (1986), 681.  doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[32]

M. Poppenberg, K. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations,, \emph{Calc. Var. Partial Differential Equations}, 14 (2002), 329.  doi: 10.1007/s005260100105.  Google Scholar

[33]

G.R.W. Quispel and H.W. Capel, Equation of motion for the Heisenberg spin chain,, \emph{Phys. A}, 110 (1982), 41.  doi: 10.1016/0378-4371(82)90104-2.  Google Scholar

[34]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions,, \emph{Phys. Rev. E}, 50 (1994), 687.  doi: 10.1103/PhysRevE.50.R687.  Google Scholar

[35]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations,, \emph{Nonlinear Anal. TMA.}, 80 (2013), 194.  doi: 10.1016/j.na.2012.10.005.  Google Scholar

[36]

E.A.B. Silva and G.F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth,, \emph{Calc. Var. Partial Differential Equations}, 39 (2010), 1.  doi: 10.1007/s00526-009-0299-1.  Google Scholar

[37]

J. Yang, Y. Wang and A.A. Abdelgadir, Soliton solutions for quasilinear Schrödinger equations,, \emph{J. Math. Phys.}, 54 (2013).  doi: 10.1063/1.4811394.  Google Scholar

[1]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[3]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[4]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[5]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[7]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[8]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[9]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[10]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[11]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[12]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[13]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[14]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[15]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[16]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[17]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[18]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[19]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[20]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]