July  2016, 15(4): 1309-1333. doi: 10.3934/cpaa.2016.15.1309

Soliton solutions for a quasilinear Schrödinger equation with critical exponent

1. 

Department of Mathematics, Central China Normal University, Wuhan, 430079, China

2. 

Department of Mathematics, Wuhan University of Technology, Wuhan, 430070, China

Received  October 2015 Revised  January 2016 Published  April 2016

This paper is concerned with the existence of soliton solutions for a quasilinear Schrödinger equation in $R^N$ with critical exponent, which appears from modelling the self-channeling of a high-power ultrashort laser in matter. By working with a perturbation approach which was initially proposed in [26], we prove that the given problem has a positive ground state solution.
Citation: Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309
References:
[1]

J. Func. Anal., 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

Comm. Pure Appl. Math., 36 (1983), 437-477. doi: 10.1002/cpa.3160360405.  Google Scholar

[3]

J. Differential Equations, 248 (2010), 722-744. doi: 10.1016/j.jde.2009.11.030.  Google Scholar

[4]

Phys. Fluids B, 5 (1993), 3539-3550. doi: 10.1063/1.860828.  Google Scholar

[5]

Phys. Rep., 189 (1990), 165-223. doi: 10.1016/0370-1573(90)90093-H.  Google Scholar

[6]

Exposition. Math., 4 (1986), 279-288.  Google Scholar

[7]

Phys. Rev. Lett., 70 (1993), 2082-2085. doi: 10.1103/PhysRevLett.70.2082.  Google Scholar

[8]

Nonlinear Anal. TMA., 56 (2004), 213-226. doi: 10.1016/j.na.2003.09.008.  Google Scholar

[9]

Physica D, 238 (2009), 38-54. doi: 10.1016/j.physd.2008.08.010.  Google Scholar

[10]

Commun. Math. Phys., 189 (1997), 73-105. doi: 10.1007/s002200050191.  Google Scholar

[11]

J. Math. Phys., 54 (2013), 011504, 27pp. doi: 10.1063/1.4774153.  Google Scholar

[12]

Commun. Math. Sci., 9 (2011), 859-878. doi: 10.4310/CMS.2011.v9.n3.a9.  Google Scholar

[13]

J. Differential Equations, 258 (2015), 115-147. doi: 10.1016/j.jde.2014.09.006.  Google Scholar

[14]

J. Differential Equations, 260 (2016), 1228-1262. doi: 10.1016/j.jde.2015.09.021.  Google Scholar

[15]

Courant Lecture Notes in Mathematics, vol. 1. New York University Courant Institute of Mathematical Sciences, New York, 1997.  Google Scholar

[16]

Z. Phys. B, 37 (1980), 83-87. Google Scholar

[17]

Phys. Rep., 194 (1990), 117-238. doi: doi:10.1016/0370-1573(90)90130-T.  Google Scholar

[18]

J. Phys. Soc. Japan, 50 (1981), 3262-3267. doi: 10.1143/JPSJ.50.3262.  Google Scholar

[19]

J. Math. Phys., 24 (1983), 2764-2769. doi: 10.1063/1.525675.  Google Scholar

[20]

Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.  Google Scholar

[21]

Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.  Google Scholar

[22]

Comm. Partial Differential Equations, 24 (1999), 1399-1418. doi: 10.1080/03605309908821469.  Google Scholar

[23]

J. Differential Equations, 187 (2003), 473-493. doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[24]

Comm. Partial Differential Equations, 29 (2004), 879-901. doi: 10.1081/PDE-120037335.  Google Scholar

[25]

Proc. Amer. Math. Soc., 131 (2003), 441-448. doi: 10.1090/S0002-9939-02-06783-7 .  Google Scholar

[26]

Proc. Amer. Math. Soc., 141 (2013), 253-263. doi: 10.1090/S0002-9939-2012-11293-6 .  Google Scholar

[27]

J. Differential Equations, 254 (2013), 102-124. doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[28]

Calc. Var. Partial Differential Equations, 46 (2013), 641-669. doi: 10.1007/s00526-012-0497-0.  Google Scholar

[29]

J. Differential Equations, 229 (2006), 570-587. doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[30]

Phys. Rep., 104 (1984), 1-86. doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[31]

Indiana Univ. Math. J., 35 (1986), 681-703. doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[32]

Calc. Var. Partial Differential Equations, 14 (2002), 329-344. doi: 10.1007/s005260100105.  Google Scholar

[33]

Phys. A, 110 (1982), 41-80. doi: 10.1016/0378-4371(82)90104-2.  Google Scholar

[34]

Phys. Rev. E, 50 (1994), 687-689. doi: 10.1103/PhysRevE.50.R687.  Google Scholar

[35]

Nonlinear Anal. TMA., 80 (2013), 194-201. doi: 10.1016/j.na.2012.10.005.  Google Scholar

[36]

Calc. Var. Partial Differential Equations, 39 (2010), 1-33. doi: 10.1007/s00526-009-0299-1.  Google Scholar

[37]

J. Math. Phys., 54 (2013), 071502, 19pp. doi: 10.1063/1.4811394.  Google Scholar

show all references

References:
[1]

J. Func. Anal., 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

Comm. Pure Appl. Math., 36 (1983), 437-477. doi: 10.1002/cpa.3160360405.  Google Scholar

[3]

J. Differential Equations, 248 (2010), 722-744. doi: 10.1016/j.jde.2009.11.030.  Google Scholar

[4]

Phys. Fluids B, 5 (1993), 3539-3550. doi: 10.1063/1.860828.  Google Scholar

[5]

Phys. Rep., 189 (1990), 165-223. doi: 10.1016/0370-1573(90)90093-H.  Google Scholar

[6]

Exposition. Math., 4 (1986), 279-288.  Google Scholar

[7]

Phys. Rev. Lett., 70 (1993), 2082-2085. doi: 10.1103/PhysRevLett.70.2082.  Google Scholar

[8]

Nonlinear Anal. TMA., 56 (2004), 213-226. doi: 10.1016/j.na.2003.09.008.  Google Scholar

[9]

Physica D, 238 (2009), 38-54. doi: 10.1016/j.physd.2008.08.010.  Google Scholar

[10]

Commun. Math. Phys., 189 (1997), 73-105. doi: 10.1007/s002200050191.  Google Scholar

[11]

J. Math. Phys., 54 (2013), 011504, 27pp. doi: 10.1063/1.4774153.  Google Scholar

[12]

Commun. Math. Sci., 9 (2011), 859-878. doi: 10.4310/CMS.2011.v9.n3.a9.  Google Scholar

[13]

J. Differential Equations, 258 (2015), 115-147. doi: 10.1016/j.jde.2014.09.006.  Google Scholar

[14]

J. Differential Equations, 260 (2016), 1228-1262. doi: 10.1016/j.jde.2015.09.021.  Google Scholar

[15]

Courant Lecture Notes in Mathematics, vol. 1. New York University Courant Institute of Mathematical Sciences, New York, 1997.  Google Scholar

[16]

Z. Phys. B, 37 (1980), 83-87. Google Scholar

[17]

Phys. Rep., 194 (1990), 117-238. doi: doi:10.1016/0370-1573(90)90130-T.  Google Scholar

[18]

J. Phys. Soc. Japan, 50 (1981), 3262-3267. doi: 10.1143/JPSJ.50.3262.  Google Scholar

[19]

J. Math. Phys., 24 (1983), 2764-2769. doi: 10.1063/1.525675.  Google Scholar

[20]

Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.  Google Scholar

[21]

Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.  Google Scholar

[22]

Comm. Partial Differential Equations, 24 (1999), 1399-1418. doi: 10.1080/03605309908821469.  Google Scholar

[23]

J. Differential Equations, 187 (2003), 473-493. doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[24]

Comm. Partial Differential Equations, 29 (2004), 879-901. doi: 10.1081/PDE-120037335.  Google Scholar

[25]

Proc. Amer. Math. Soc., 131 (2003), 441-448. doi: 10.1090/S0002-9939-02-06783-7 .  Google Scholar

[26]

Proc. Amer. Math. Soc., 141 (2013), 253-263. doi: 10.1090/S0002-9939-2012-11293-6 .  Google Scholar

[27]

J. Differential Equations, 254 (2013), 102-124. doi: 10.1016/j.jde.2012.09.006.  Google Scholar

[28]

Calc. Var. Partial Differential Equations, 46 (2013), 641-669. doi: 10.1007/s00526-012-0497-0.  Google Scholar

[29]

J. Differential Equations, 229 (2006), 570-587. doi: 10.1016/j.jde.2006.07.001.  Google Scholar

[30]

Phys. Rep., 104 (1984), 1-86. doi: 10.1016/0370-1573(84)90106-6.  Google Scholar

[31]

Indiana Univ. Math. J., 35 (1986), 681-703. doi: 10.1512/iumj.1986.35.35036.  Google Scholar

[32]

Calc. Var. Partial Differential Equations, 14 (2002), 329-344. doi: 10.1007/s005260100105.  Google Scholar

[33]

Phys. A, 110 (1982), 41-80. doi: 10.1016/0378-4371(82)90104-2.  Google Scholar

[34]

Phys. Rev. E, 50 (1994), 687-689. doi: 10.1103/PhysRevE.50.R687.  Google Scholar

[35]

Nonlinear Anal. TMA., 80 (2013), 194-201. doi: 10.1016/j.na.2012.10.005.  Google Scholar

[36]

Calc. Var. Partial Differential Equations, 39 (2010), 1-33. doi: 10.1007/s00526-009-0299-1.  Google Scholar

[37]

J. Math. Phys., 54 (2013), 071502, 19pp. doi: 10.1063/1.4811394.  Google Scholar

[1]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[2]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021038

[3]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[4]

Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021061

[5]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[7]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[8]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[9]

Fangyi Qin, Jun Wang, Jing Yang. Infinitely many positive solutions for Schrödinger-poisson systems with nonsymmetry potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021054

[10]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[11]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[12]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[13]

Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021115

[14]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[15]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[16]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[17]

Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021024

[18]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[19]

Yosra Soussi. Stable recovery of a non-compactly supported coefficient of a Schrödinger equation on an infinite waveguide. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021022

[20]

Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021047

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]