July  2016, 15(4): 1401-1417. doi: 10.3934/cpaa.2016.15.1401

Parabolic problems with general Wentzell boundary conditions and diffusion on the boundary

1. 

Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna

Received  September 2015 Revised  January 2016 Published  April 2016

We show a result of maximal regularity in spaces of Hölder continuous function, concerning linear parabolic systems, with dynamic or Wentzell boundary conditions, with an elliptic diffusion term on the boundary.
Citation: Davide Guidetti. Parabolic problems with general Wentzell boundary conditions and diffusion on the boundary. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1401-1417. doi: 10.3934/cpaa.2016.15.1401
References:
[1]

T. Clarke, G.R. Goldstein, J.A. Goldstein and S. Romanelli, The Wentzell telegraph equation: asymptotics and continuous dependence on the boundary conditions, Commun. Pure Appl. Anal., 15 (2011), 313-324.

[2]

G.M. Coclite, A. Favini, G.R. Goldstein, J.A. Goldstein and S. Romanelli, Continuous dependence on the boundary conditions for the Wentzell Laplacian, Semigroup Forum, 77 (2008), 101-108. doi: 10.1007/s00233-008-9068-2.

[3]

A. Favini, G.R. Goldstein, J.A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem, Math. Nachr., 283 (2010), 504-521. doi: 10.1002/mana.200910086.

[4]

G.R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Diff. Eq., 11 (2006), 457-480.

[5]

G.R. Goldstein, J.A. Goldstein, D. Guidetti and S. Romanelli, General Wentzell boundary conditions in $L^p$ spaces,, work in progress., (). 

[6]

D. Guidetti, On elliptic problems in Besov spaces, Math. Nachr., 152 (1991), 247-275. doi: 10.1002/mana.19911520120.

[7]

D. Guidetti, On interpolation with boundary conditions, Math. Z., 207 (1991), 439-460. doi: 10.1007/BF02571401.

[8]

D. Guidetti, Abstract elliptic problems depending on a parameter and parabolic problems with dynamic boundary conditions, Chapter 9, Springer INdAM Series, 10 (2014), 161-202. doi: 10.1007/978-3-319-11406-4_9.

[9]

D. Guidetti, Linear parabolic problems with dynamic boundary conditions in spaces of Hölder continuous functions, Ann. Mat. Pura Appl., 195 (2016), 167-198. doi: 10.1007/s10231-014-0457-8.

[10]

D. Guidetti, Classical solutions to quasilinear parabolic problems with dynamic boundary conditions,, preprint, (). 

[11]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, 1995. doi: 10.1007/978-3-0348-9234-6.

[12]

P. Sacks and M. Warma, Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1-$data, Discrete Cont. Dyn. Syst., 34 (2014), 761-787.

[13]

J.L. Vazquez and E. Vitillaro, Heat equation with dynamical boundary conditions of reactive-diffusive type, J. Diff. Eq., 250 (2011), 2143-2161. doi: 10.1016/j.jde.2010.12.012.

[14]

M. Warma, Parabolic and elliptic problems with general Wentzell boundary condition on Lipschitz domains, Commun. Pure Appl. Anal., 12 (2013), 1881-1905. doi: 10.3934/cpaa.2013.12.1881.

[15]

M. Warma, Semi linear parabolic equations with nonlinear general Wentzell boundary conditions, Discrete Cont. Dyn. Systems, 33 (2013), 5493-5506. doi: 10.3934/dcds.2013.33.5493.

show all references

References:
[1]

T. Clarke, G.R. Goldstein, J.A. Goldstein and S. Romanelli, The Wentzell telegraph equation: asymptotics and continuous dependence on the boundary conditions, Commun. Pure Appl. Anal., 15 (2011), 313-324.

[2]

G.M. Coclite, A. Favini, G.R. Goldstein, J.A. Goldstein and S. Romanelli, Continuous dependence on the boundary conditions for the Wentzell Laplacian, Semigroup Forum, 77 (2008), 101-108. doi: 10.1007/s00233-008-9068-2.

[3]

A. Favini, G.R. Goldstein, J.A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem, Math. Nachr., 283 (2010), 504-521. doi: 10.1002/mana.200910086.

[4]

G.R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Diff. Eq., 11 (2006), 457-480.

[5]

G.R. Goldstein, J.A. Goldstein, D. Guidetti and S. Romanelli, General Wentzell boundary conditions in $L^p$ spaces,, work in progress., (). 

[6]

D. Guidetti, On elliptic problems in Besov spaces, Math. Nachr., 152 (1991), 247-275. doi: 10.1002/mana.19911520120.

[7]

D. Guidetti, On interpolation with boundary conditions, Math. Z., 207 (1991), 439-460. doi: 10.1007/BF02571401.

[8]

D. Guidetti, Abstract elliptic problems depending on a parameter and parabolic problems with dynamic boundary conditions, Chapter 9, Springer INdAM Series, 10 (2014), 161-202. doi: 10.1007/978-3-319-11406-4_9.

[9]

D. Guidetti, Linear parabolic problems with dynamic boundary conditions in spaces of Hölder continuous functions, Ann. Mat. Pura Appl., 195 (2016), 167-198. doi: 10.1007/s10231-014-0457-8.

[10]

D. Guidetti, Classical solutions to quasilinear parabolic problems with dynamic boundary conditions,, preprint, (). 

[11]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, 1995. doi: 10.1007/978-3-0348-9234-6.

[12]

P. Sacks and M. Warma, Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1-$data, Discrete Cont. Dyn. Syst., 34 (2014), 761-787.

[13]

J.L. Vazquez and E. Vitillaro, Heat equation with dynamical boundary conditions of reactive-diffusive type, J. Diff. Eq., 250 (2011), 2143-2161. doi: 10.1016/j.jde.2010.12.012.

[14]

M. Warma, Parabolic and elliptic problems with general Wentzell boundary condition on Lipschitz domains, Commun. Pure Appl. Anal., 12 (2013), 1881-1905. doi: 10.3934/cpaa.2013.12.1881.

[15]

M. Warma, Semi linear parabolic equations with nonlinear general Wentzell boundary conditions, Discrete Cont. Dyn. Systems, 33 (2013), 5493-5506. doi: 10.3934/dcds.2013.33.5493.

[1]

Davide Guidetti. On hyperbolic mixed problems with dynamic and Wentzell boundary conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3461-3471. doi: 10.3934/dcdss.2020239

[2]

József Z. Farkas, Peter Hinow. Physiologically structured populations with diffusion and dynamic boundary conditions. Mathematical Biosciences & Engineering, 2011, 8 (2) : 503-513. doi: 10.3934/mbe.2011.8.503

[3]

Giuseppe Maria Coclite, Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Continuous dependence in hyperbolic problems with Wentzell boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (1) : 419-433. doi: 10.3934/cpaa.2014.13.419

[4]

Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations and Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631

[5]

Jihoon Lee, Vu Manh Toi. Attractors for a class of delayed reaction-diffusion equations with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3135-3152. doi: 10.3934/dcdsb.2020054

[6]

Ciprian G. Gal, Mahamadi Warma. Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evolution Equations and Control Theory, 2016, 5 (1) : 61-103. doi: 10.3934/eect.2016.5.61

[7]

Mustapha Mokhtar-Kharroubi, Quentin Richard. Time asymptotics of structured populations with diffusion and dynamic boundary conditions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4087-4116. doi: 10.3934/dcdsb.2018127

[8]

Genni Fragnelli, Gisèle Ruiz Goldstein, Jerome Goldstein, Rosa Maria Mininni, Silvia Romanelli. Generalized Wentzell boundary conditions for second order operators with interior degeneracy. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 697-715. doi: 10.3934/dcdss.2016023

[9]

Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Enrico Obrecht, Silvia Romanelli. Nonsymmetric elliptic operators with Wentzell boundary conditions in general domains. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2475-2487. doi: 10.3934/cpaa.2016045

[10]

Mahamadi Warma. Semi linear parabolic equations with nonlinear general Wentzell boundary conditions. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5493-5506. doi: 10.3934/dcds.2013.33.5493

[11]

Peter Weidemaier. Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm. Electronic Research Announcements, 2002, 8: 47-51.

[12]

Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure and Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689

[13]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations and Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[14]

V. Casarino, K.-J. Engel, G. Nickel, S. Piazzera. Decoupling techniques for wave equations with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 761-772. doi: 10.3934/dcds.2005.12.761

[15]

Cecilia Cavaterra, Maurizio Grasselli, Hao Wu. Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1855-1890. doi: 10.3934/cpaa.2014.13.1855

[16]

Alassane Niang. Boundary regularity for a degenerate elliptic equation with mixed boundary conditions. Communications on Pure and Applied Analysis, 2019, 18 (1) : 107-128. doi: 10.3934/cpaa.2019007

[17]

Antonio Suárez. A logistic equation with degenerate diffusion and Robin boundary conditions. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1255-1267. doi: 10.3934/cpaa.2008.7.1255

[18]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[19]

Eugenio Montefusco, Benedetta Pellacci, Gianmaria Verzini. Fractional diffusion with Neumann boundary conditions: The logistic equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2175-2202. doi: 10.3934/dcdsb.2013.18.2175

[20]

Hung Le. Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3357-3385. doi: 10.3934/dcds.2018144

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (149)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]