• Previous Article
    Threshold asymptotic behaviors for a delayed nonlocal reaction-diffusion model of mistletoes and birds in a 2D strip
  • CPAA Home
  • This Issue
  • Next Article
    On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions
July  2016, 15(4): 1451-1469. doi: 10.3934/cpaa.2016.15.1451

Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species

1. 

Department of Mathematics, National Taiwan University, and National Center for Theoretical Sciences (Taipei Office), No. 1, Sec. 4, Roosevelt Road, Taipei, 10617

2. 

Department of Mathematics, National Taiwan University, and National Center for Theoretical Sciences (Taipei Office), No. 1, Sec. 4, Roosevelt Road, Taipei, 10617

Received  July 2014 Revised  December 2015 Published  April 2016

In reaction-diffusion models describing the interaction between the invading grey squirrel and the established red squirrel in Britain, Okubo et al. ([19]) found that in certain parameter regimes, the profiles of the two species in a wave propagation solution can be determined via a solution of the KPP equation. Motivated by their result, we employ an elementary approach based on the maximum principle for elliptic inequalities coupled with estimates of a total density of the three species to establish the nonexistence of traveling wave solutions for Lotka-Volterra systems of three competing species. Applying our estimates to the May-Leonard model, we obtain upper and lower bounds for the total density of a solution to this system. For the existence of traveling wave solutions to the Lotka-Volterra three-species competing system, we find new semi-exact solutions by virtue of functions other than hyperbolic tangent functions, which are used in constructing one-hump exact traveling wave solutions in [2]. Moreover, new two-hump semi-exact traveling wave solutions different from the ones found in [1] are constructed.
Citation: Chiun-Chuan Chen, Li-Chang Hung. Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1451-1469. doi: 10.3934/cpaa.2016.15.1451
References:
[1]

C.-C. Chen, L.-C. Hung, M. Mimura, M. Tohma and D. Ueyama, Semi-exact equilibrium solutions for three-species competition-diffusion systems, Hiroshima Math J., 43 (2013), 176-206.

[2]

C.-C. Chen, L.-C. Hung, M. Mimura and D. Ueyama, Exact travelling wave solutions of three-species competition-diffusion systems, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2653-2669. doi: 10.3934/dcdsb.2012.17.2653.

[3]

Y.-S. Chiou, Travelling wave solutions for reaction-diffusion-advection equations, Master Thesis, Department of Mathematics, National Taiwan University, Taiwan, (2010), 1-49.

[4]

P. de Mottoni, Qualitative analysis for some quasilinear parabolic systems, Institute of Math., Polish Academy Sci., zam, 11 (1979), 190.

[5]

N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a diffusing Lotka-Volterra system, Nonlinear Anal. Real World Appl., 4 (2003), 503-524. doi: 10.1016/S1468-1218(02)00077-9.

[6]

L.-C. Hung, Exact traveling wave solutions for diffusive Lotka-Volterra systems of two competing species, Jpn. J. Ind. Appl. Math., 29 (2012), 237-251. doi: 10.1007/s13160-012-0056-2.

[7]

H. Ikeda, Multiple travelling wave solutions of three-component systems with competition and diffusion, Methods Appl. Anal., 8 (2001), 479-496.

[8]

H. Ikeda, Travelling wave solutions of three-component systems with competition and diffusion, Math. J. Toyama Univ., 24 (2001), 37-66.

[9]

H. Ikeda, Global bifurcation phenomena of standing pulse solutions for three-component systems with competition and diffusion, Hiroshima Math. J., 32 (2002), 87-124.

[10]

H. Ikeda, Dynamics of weakly interacting front and back waves in three-component systems, Toyama Math. J., 30 (2007), 1-34.

[11]

Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363. doi: 10.1137/S0036141093244556.

[12]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997), 145-164. doi: 10.1016/0362-546X(95)00142-I.

[13]

A. Kolmogoroff, I. Petrovsky and N. Piscounoff, Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem, Bull. Math, 1 (1937), 1-25. (French) Moscow Univ.

[14]

A. W. Leung, X. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system re-visited, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 171-196. doi: 10.3934/dcdsb.2011.15.171.

[15]

A. W. Leung, X. Hou, and Y. Li, Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities, J. Math. Anal. Appl., 338 (2008), 902-924. doi: 10.1016/j.jmaa.2007.05.066.

[16]

R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species, SIAM J. Appl. Math., 29 (1975), 243-253.

[17]

P. D. Miller, Nonmonotone waves in a three species reaction-diffusion model, Methods Appl. Anal., 4 (1997), 261-282.

[18]

P. D. Miller, Stability of non-monotone waves in a three-species reaction-diffusion model, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 125-152. doi: 10.1017/S0308210500027499.

[19]

A. Okubo, P. Maini, M. Williamson and J. Murray, On the spatial spread of the grey squirrel in britain, Proceedings of the Royal Society of London. B. Biological Sciences, 238 (1989), 113-125.

[20]

M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system, Hiroshima Math. J., 30 (2000), 257-270.

[21]

M. Rodrigo and M. Mimura, Exact solutions of reaction-diffusion systems and nonlinear wave equations, Japan J. Indust. Appl. Math., 18 (2001), 657-696. doi: 10.1007/BF03167410.

show all references

References:
[1]

C.-C. Chen, L.-C. Hung, M. Mimura, M. Tohma and D. Ueyama, Semi-exact equilibrium solutions for three-species competition-diffusion systems, Hiroshima Math J., 43 (2013), 176-206.

[2]

C.-C. Chen, L.-C. Hung, M. Mimura and D. Ueyama, Exact travelling wave solutions of three-species competition-diffusion systems, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2653-2669. doi: 10.3934/dcdsb.2012.17.2653.

[3]

Y.-S. Chiou, Travelling wave solutions for reaction-diffusion-advection equations, Master Thesis, Department of Mathematics, National Taiwan University, Taiwan, (2010), 1-49.

[4]

P. de Mottoni, Qualitative analysis for some quasilinear parabolic systems, Institute of Math., Polish Academy Sci., zam, 11 (1979), 190.

[5]

N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a diffusing Lotka-Volterra system, Nonlinear Anal. Real World Appl., 4 (2003), 503-524. doi: 10.1016/S1468-1218(02)00077-9.

[6]

L.-C. Hung, Exact traveling wave solutions for diffusive Lotka-Volterra systems of two competing species, Jpn. J. Ind. Appl. Math., 29 (2012), 237-251. doi: 10.1007/s13160-012-0056-2.

[7]

H. Ikeda, Multiple travelling wave solutions of three-component systems with competition and diffusion, Methods Appl. Anal., 8 (2001), 479-496.

[8]

H. Ikeda, Travelling wave solutions of three-component systems with competition and diffusion, Math. J. Toyama Univ., 24 (2001), 37-66.

[9]

H. Ikeda, Global bifurcation phenomena of standing pulse solutions for three-component systems with competition and diffusion, Hiroshima Math. J., 32 (2002), 87-124.

[10]

H. Ikeda, Dynamics of weakly interacting front and back waves in three-component systems, Toyama Math. J., 30 (2007), 1-34.

[11]

Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363. doi: 10.1137/S0036141093244556.

[12]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997), 145-164. doi: 10.1016/0362-546X(95)00142-I.

[13]

A. Kolmogoroff, I. Petrovsky and N. Piscounoff, Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem, Bull. Math, 1 (1937), 1-25. (French) Moscow Univ.

[14]

A. W. Leung, X. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system re-visited, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 171-196. doi: 10.3934/dcdsb.2011.15.171.

[15]

A. W. Leung, X. Hou, and Y. Li, Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities, J. Math. Anal. Appl., 338 (2008), 902-924. doi: 10.1016/j.jmaa.2007.05.066.

[16]

R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species, SIAM J. Appl. Math., 29 (1975), 243-253.

[17]

P. D. Miller, Nonmonotone waves in a three species reaction-diffusion model, Methods Appl. Anal., 4 (1997), 261-282.

[18]

P. D. Miller, Stability of non-monotone waves in a three-species reaction-diffusion model, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 125-152. doi: 10.1017/S0308210500027499.

[19]

A. Okubo, P. Maini, M. Williamson and J. Murray, On the spatial spread of the grey squirrel in britain, Proceedings of the Royal Society of London. B. Biological Sciences, 238 (1989), 113-125.

[20]

M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system, Hiroshima Math. J., 30 (2000), 257-270.

[21]

M. Rodrigo and M. Mimura, Exact solutions of reaction-diffusion systems and nonlinear wave equations, Japan J. Indust. Appl. Math., 18 (2001), 657-696. doi: 10.1007/BF03167410.

[1]

Chiun-Chuan Chen, Yin-Liang Huang, Li-Chang Hung, Chang-Hong Wu. Semi-exact solutions and pulsating fronts for Lotka-Volterra systems of two competing species in spatially periodic habitats. Communications on Pure and Applied Analysis, 2020, 19 (1) : 1-18. doi: 10.3934/cpaa.2020001

[2]

Zengji Du, Shuling Yan, Kaige Zhuang. Traveling wave fronts in a diffusive and competitive Lotka-Volterra system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3097-3111. doi: 10.3934/dcdss.2021010

[3]

Bang-Sheng Han, Zhi-Cheng Wang, Zengji Du. Traveling waves for nonlocal Lotka-Volterra competition systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1959-1983. doi: 10.3934/dcdsb.2020011

[4]

Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043

[5]

Yuzo Hosono. Traveling waves for a diffusive Lotka-Volterra competition model I: singular perturbations. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 79-95. doi: 10.3934/dcdsb.2003.3.79

[6]

Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055

[7]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[8]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[9]

Wentao Meng, Yuanxi Yue, Manjun Ma. The minimal wave speed of the Lotka-Volterra competition model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2022, 27 (9) : 5085-5100. doi: 10.3934/dcdsb.2021265

[10]

Cheng-Hsiung Hsu, Ting-Hui Yang. Traveling plane wave solutions of delayed lattice differential systems in competitive Lotka-Volterra type. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 111-128. doi: 10.3934/dcdsb.2010.14.111

[11]

Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171

[12]

Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300

[13]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[14]

Yuan Lou, Salomé Martínez, Wei-Ming Ni. On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 175-190. doi: 10.3934/dcds.2000.6.175

[15]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[16]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[17]

Li Ma, Shangjiang Guo. Bifurcation and stability of a two-species diffusive Lotka-Volterra model. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1205-1232. doi: 10.3934/cpaa.2020056

[18]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[19]

Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195

[20]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (235)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]