July  2016, 15(4): 1497-1514. doi: 10.3934/cpaa.2016.15.1497

Classification of bifurcation curves of positive solutions for a nonpositone problem with a quartic polynomial

1. 

Department of Applied Mathematics, National University of Tainan, Tainan 700, Taiwan, Taiwan

Received  September 2015 Revised  February 2016 Published  April 2016

We study exact multiplicity and bifurcation curves of positive solutions of the boundary value problem \begin{eqnarray} &u"(x)+\lambda (-u^4+\sigma u^3-\tau u^2+\rho u)=0, -1 < x < 1, \\ &u(-1)=u(1)=0, \end{eqnarray} where $\sigma, \tau \in \mathbb{R}$, $\rho \geq 0,$ and $\lambda >0$ is a bifurcation parameter. Then on the $(\lambda, \|u\|_\infty)$-plane, we give a classification of four qualitatively different bifurcation curves: an S-shaped curve, a broken S-shaped curve, a $\subset$-shaped curve and a monotone increasing curve.
Citation: Kuan-Ju Huang, Yi-Jung Lee, Tzung-Shin Yeh. Classification of bifurcation curves of positive solutions for a nonpositone problem with a quartic polynomial. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1497-1514. doi: 10.3934/cpaa.2016.15.1497
References:
[1]

I. Addou and S.-H. Wang, Exact multiplicity results for a $p$-Laplacian problem with concave-convex-concave nonlinearities,, \emph{Nonlinear Anal.}, 53 (2003), 111.  doi: 10.1016/S0362-546X(02)00298-5.  Google Scholar

[2]

M.G. Crandall and P.H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, \emph {Arch. Rational Mech. Anal.}, 52 (1973), 161.   Google Scholar

[3]

K.-C. Hung and S.-H. Wang, Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity and their applications,, \emph{Trans. Amer. Math. Soc.}, 365 (2013), 1933.  doi: 10.1090/S0002-9947-2012-05670-4.  Google Scholar

[4]

P. Korman, Y. Li and T. Ouyang, Exact multiplicity results for boundary value problems with nonlinearities generalising cubic,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 126 (1996), 599.  doi: 10.1017/S0308210500022927.  Google Scholar

[5]

T. Laetsch, The number of solutions of a nonlinear two point boundary value problem,, \emph{Indiana Univ. Math. J.}, 20 (1970), 1.   Google Scholar

[6]

J. Shi, Multi-parameter bifurcation and applications,, in \emph{ICM2002 Satellite Conference on Nonlinear Functional Analysis: Topological Methods, (2003), 211.   Google Scholar

[7]

J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions,, \emph{J. Differential Equations}, 39 (1981), 269.  doi: 10.1016/0022-0396(81)90077-2.  Google Scholar

[8]

C.-C. Tzeng, K.-C. Hung and S.-H. Wang, Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity,, \emph{J. Differential Equations}, 252 (2012), 6250.  doi: 10.1016/j.jde.2012.02.020.  Google Scholar

[9]

S.-H. Wang, A correction for a paper by J. Smoller and A. Wasserman,, \emph{J. Differential Equations}, 77 (1989), 199.  doi: 10.1016/0022-0396(89)90162-9.  Google Scholar

[10]

S.-H. Wang and N. D. Kazarinoff, Bifurcation and stability of positive solutions of a two-point boundary value problem,, \emph{J. Austral. Math. Soc. Ser. A}, 52 (1992), 334.   Google Scholar

[11]

S.-H. Wang and N. D. Kazarinoff, Bifurcation of steady-state solutions of a scalar reaction-diffusion equation in one space variable,, \emph{J. Austral. Math. Soc. Ser. A}, 52 (1992), 343.   Google Scholar

[12]

S.-H. Wang and T.-S. Yeh, S-shaped and broken S-shaped bifurcation diagrams with hysteresis for a multiparameter spruce budworm population problem in one space dimension,, \emph{J. Differential Equations}, 255 (2013), 812.  doi: 10.1016/j.jde.2013.05.004.  Google Scholar

show all references

References:
[1]

I. Addou and S.-H. Wang, Exact multiplicity results for a $p$-Laplacian problem with concave-convex-concave nonlinearities,, \emph{Nonlinear Anal.}, 53 (2003), 111.  doi: 10.1016/S0362-546X(02)00298-5.  Google Scholar

[2]

M.G. Crandall and P.H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, \emph {Arch. Rational Mech. Anal.}, 52 (1973), 161.   Google Scholar

[3]

K.-C. Hung and S.-H. Wang, Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity and their applications,, \emph{Trans. Amer. Math. Soc.}, 365 (2013), 1933.  doi: 10.1090/S0002-9947-2012-05670-4.  Google Scholar

[4]

P. Korman, Y. Li and T. Ouyang, Exact multiplicity results for boundary value problems with nonlinearities generalising cubic,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 126 (1996), 599.  doi: 10.1017/S0308210500022927.  Google Scholar

[5]

T. Laetsch, The number of solutions of a nonlinear two point boundary value problem,, \emph{Indiana Univ. Math. J.}, 20 (1970), 1.   Google Scholar

[6]

J. Shi, Multi-parameter bifurcation and applications,, in \emph{ICM2002 Satellite Conference on Nonlinear Functional Analysis: Topological Methods, (2003), 211.   Google Scholar

[7]

J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions,, \emph{J. Differential Equations}, 39 (1981), 269.  doi: 10.1016/0022-0396(81)90077-2.  Google Scholar

[8]

C.-C. Tzeng, K.-C. Hung and S.-H. Wang, Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity,, \emph{J. Differential Equations}, 252 (2012), 6250.  doi: 10.1016/j.jde.2012.02.020.  Google Scholar

[9]

S.-H. Wang, A correction for a paper by J. Smoller and A. Wasserman,, \emph{J. Differential Equations}, 77 (1989), 199.  doi: 10.1016/0022-0396(89)90162-9.  Google Scholar

[10]

S.-H. Wang and N. D. Kazarinoff, Bifurcation and stability of positive solutions of a two-point boundary value problem,, \emph{J. Austral. Math. Soc. Ser. A}, 52 (1992), 334.   Google Scholar

[11]

S.-H. Wang and N. D. Kazarinoff, Bifurcation of steady-state solutions of a scalar reaction-diffusion equation in one space variable,, \emph{J. Austral. Math. Soc. Ser. A}, 52 (1992), 343.   Google Scholar

[12]

S.-H. Wang and T.-S. Yeh, S-shaped and broken S-shaped bifurcation diagrams with hysteresis for a multiparameter spruce budworm population problem in one space dimension,, \emph{J. Differential Equations}, 255 (2013), 812.  doi: 10.1016/j.jde.2013.05.004.  Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[3]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[4]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[5]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[8]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[9]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[10]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[11]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[12]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[13]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[14]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[15]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[16]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[17]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[18]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[19]

Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[20]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]