July  2016, 15(4): 1497-1514. doi: 10.3934/cpaa.2016.15.1497

Classification of bifurcation curves of positive solutions for a nonpositone problem with a quartic polynomial

1. 

Department of Applied Mathematics, National University of Tainan, Tainan 700, Taiwan, Taiwan

Received  September 2015 Revised  February 2016 Published  April 2016

We study exact multiplicity and bifurcation curves of positive solutions of the boundary value problem \begin{eqnarray} &u"(x)+\lambda (-u^4+\sigma u^3-\tau u^2+\rho u)=0, -1 < x < 1, \\ &u(-1)=u(1)=0, \end{eqnarray} where $\sigma, \tau \in \mathbb{R}$, $\rho \geq 0,$ and $\lambda >0$ is a bifurcation parameter. Then on the $(\lambda, \|u\|_\infty)$-plane, we give a classification of four qualitatively different bifurcation curves: an S-shaped curve, a broken S-shaped curve, a $\subset$-shaped curve and a monotone increasing curve.
Citation: Kuan-Ju Huang, Yi-Jung Lee, Tzung-Shin Yeh. Classification of bifurcation curves of positive solutions for a nonpositone problem with a quartic polynomial. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1497-1514. doi: 10.3934/cpaa.2016.15.1497
References:
[1]

I. Addou and S.-H. Wang, Exact multiplicity results for a $p$-Laplacian problem with concave-convex-concave nonlinearities,, \emph{Nonlinear Anal.}, 53 (2003), 111.  doi: 10.1016/S0362-546X(02)00298-5.  Google Scholar

[2]

M.G. Crandall and P.H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, \emph {Arch. Rational Mech. Anal.}, 52 (1973), 161.   Google Scholar

[3]

K.-C. Hung and S.-H. Wang, Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity and their applications,, \emph{Trans. Amer. Math. Soc.}, 365 (2013), 1933.  doi: 10.1090/S0002-9947-2012-05670-4.  Google Scholar

[4]

P. Korman, Y. Li and T. Ouyang, Exact multiplicity results for boundary value problems with nonlinearities generalising cubic,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 126 (1996), 599.  doi: 10.1017/S0308210500022927.  Google Scholar

[5]

T. Laetsch, The number of solutions of a nonlinear two point boundary value problem,, \emph{Indiana Univ. Math. J.}, 20 (1970), 1.   Google Scholar

[6]

J. Shi, Multi-parameter bifurcation and applications,, in \emph{ICM2002 Satellite Conference on Nonlinear Functional Analysis: Topological Methods, (2003), 211.   Google Scholar

[7]

J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions,, \emph{J. Differential Equations}, 39 (1981), 269.  doi: 10.1016/0022-0396(81)90077-2.  Google Scholar

[8]

C.-C. Tzeng, K.-C. Hung and S.-H. Wang, Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity,, \emph{J. Differential Equations}, 252 (2012), 6250.  doi: 10.1016/j.jde.2012.02.020.  Google Scholar

[9]

S.-H. Wang, A correction for a paper by J. Smoller and A. Wasserman,, \emph{J. Differential Equations}, 77 (1989), 199.  doi: 10.1016/0022-0396(89)90162-9.  Google Scholar

[10]

S.-H. Wang and N. D. Kazarinoff, Bifurcation and stability of positive solutions of a two-point boundary value problem,, \emph{J. Austral. Math. Soc. Ser. A}, 52 (1992), 334.   Google Scholar

[11]

S.-H. Wang and N. D. Kazarinoff, Bifurcation of steady-state solutions of a scalar reaction-diffusion equation in one space variable,, \emph{J. Austral. Math. Soc. Ser. A}, 52 (1992), 343.   Google Scholar

[12]

S.-H. Wang and T.-S. Yeh, S-shaped and broken S-shaped bifurcation diagrams with hysteresis for a multiparameter spruce budworm population problem in one space dimension,, \emph{J. Differential Equations}, 255 (2013), 812.  doi: 10.1016/j.jde.2013.05.004.  Google Scholar

show all references

References:
[1]

I. Addou and S.-H. Wang, Exact multiplicity results for a $p$-Laplacian problem with concave-convex-concave nonlinearities,, \emph{Nonlinear Anal.}, 53 (2003), 111.  doi: 10.1016/S0362-546X(02)00298-5.  Google Scholar

[2]

M.G. Crandall and P.H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, \emph {Arch. Rational Mech. Anal.}, 52 (1973), 161.   Google Scholar

[3]

K.-C. Hung and S.-H. Wang, Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity and their applications,, \emph{Trans. Amer. Math. Soc.}, 365 (2013), 1933.  doi: 10.1090/S0002-9947-2012-05670-4.  Google Scholar

[4]

P. Korman, Y. Li and T. Ouyang, Exact multiplicity results for boundary value problems with nonlinearities generalising cubic,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 126 (1996), 599.  doi: 10.1017/S0308210500022927.  Google Scholar

[5]

T. Laetsch, The number of solutions of a nonlinear two point boundary value problem,, \emph{Indiana Univ. Math. J.}, 20 (1970), 1.   Google Scholar

[6]

J. Shi, Multi-parameter bifurcation and applications,, in \emph{ICM2002 Satellite Conference on Nonlinear Functional Analysis: Topological Methods, (2003), 211.   Google Scholar

[7]

J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions,, \emph{J. Differential Equations}, 39 (1981), 269.  doi: 10.1016/0022-0396(81)90077-2.  Google Scholar

[8]

C.-C. Tzeng, K.-C. Hung and S.-H. Wang, Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity,, \emph{J. Differential Equations}, 252 (2012), 6250.  doi: 10.1016/j.jde.2012.02.020.  Google Scholar

[9]

S.-H. Wang, A correction for a paper by J. Smoller and A. Wasserman,, \emph{J. Differential Equations}, 77 (1989), 199.  doi: 10.1016/0022-0396(89)90162-9.  Google Scholar

[10]

S.-H. Wang and N. D. Kazarinoff, Bifurcation and stability of positive solutions of a two-point boundary value problem,, \emph{J. Austral. Math. Soc. Ser. A}, 52 (1992), 334.   Google Scholar

[11]

S.-H. Wang and N. D. Kazarinoff, Bifurcation of steady-state solutions of a scalar reaction-diffusion equation in one space variable,, \emph{J. Austral. Math. Soc. Ser. A}, 52 (1992), 343.   Google Scholar

[12]

S.-H. Wang and T.-S. Yeh, S-shaped and broken S-shaped bifurcation diagrams with hysteresis for a multiparameter spruce budworm population problem in one space dimension,, \emph{J. Differential Equations}, 255 (2013), 812.  doi: 10.1016/j.jde.2013.05.004.  Google Scholar

[1]

Tzung-shin Yeh. S-shaped and broken s-shaped bifurcation curves for a multiparameter diffusive logistic problem with holling type-Ⅲ functional response. Communications on Pure & Applied Analysis, 2017, 16 (2) : 645-670. doi: 10.3934/cpaa.2017032

[2]

Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839

[3]

Chih-Yuan Chen, Shin-Hwa Wang, Kuo-Chih Hung. S-shaped bifurcation curves for a combustion problem with general arrhenius reaction-rate laws. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2589-2608. doi: 10.3934/cpaa.2014.13.2589

[4]

Sabri Bensid, Jesús Ildefonso Díaz. Stability results for discontinuous nonlinear elliptic and parabolic problems with a S-shaped bifurcation branch of stationary solutions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1757-1778. doi: 10.3934/dcdsb.2017105

[5]

Po-Chun Huang, Shin-Hwa Wang, Tzung-Shin Yeh. Classification of bifurcation diagrams of a $P$-Laplacian nonpositone problem. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2297-2318. doi: 10.3934/cpaa.2013.12.2297

[6]

Tetsuya Ishiwata, Takeshi Ohtsuka. Evolution of a spiral-shaped polygonal curve by the crystalline curvature flow with a pinned tip. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5261-5295. doi: 10.3934/dcdsb.2019058

[7]

Paweł Góra, Abraham Boyarsky. Stochastic perturbations and Ulam's method for W-shaped maps. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1937-1944. doi: 10.3934/dcds.2013.33.1937

[8]

Xue Dong He, Roy Kouwenberg, Xun Yu Zhou. Inverse S-shaped probability weighting and its impact on investment. Mathematical Control & Related Fields, 2018, 8 (3&4) : 679-706. doi: 10.3934/mcrf.2018029

[9]

Shao-Yuan Huang. Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1271-1294. doi: 10.3934/cpaa.2018061

[10]

Shao-Yuan Huang. Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3267-3284. doi: 10.3934/cpaa.2019147

[11]

Sébastien Biebler. Lattès maps and the interior of the bifurcation locus. Journal of Modern Dynamics, 2019, 15: 95-130. doi: 10.3934/jmd.2019014

[12]

Amadeu Delshams, Josep J. Masdemont, Pablo Roldán. Computing the scattering map in the spatial Hill's problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 455-483. doi: 10.3934/dcdsb.2008.10.455

[13]

Uriel Kaufmann, Humberto Ramos Quoirin, Kenichiro Umezu. A curve of positive solutions for an indefinite sublinear Dirichlet problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 817-845. doi: 10.3934/dcds.2020063

[14]

Marie-Claude Arnaud. A nondifferentiable essential irrational invariant curve for a $C^1$ symplectic twist map. Journal of Modern Dynamics, 2011, 5 (3) : 583-591. doi: 10.3934/jmd.2011.5.583

[15]

Ana Paula S. Dias, Paul C. Matthews, Ana Rodrigues. Generating functions for Hopf bifurcation with $ S_n$-symmetry. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 823-842. doi: 10.3934/dcds.2009.25.823

[16]

Dong Han Kim, Luca Marchese, Stefano Marmi. Long hitting time for translation flows and L-shaped billiards. Journal of Modern Dynamics, 2019, 14: 291-353. doi: 10.3934/jmd.2019011

[17]

Alejandro Allendes, Alexander Quaas. Multiplicity results for extremal operators through bifurcation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 51-65. doi: 10.3934/dcds.2011.29.51

[18]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[19]

Yurong Li, Zhengdong Du. Applying battelli-fečkan's method to transversal heteroclinic bifurcation in piecewise smooth systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6025-6052. doi: 10.3934/dcdsb.2019119

[20]

Koray Karabina, Berkant Ustaoglu. Invalid-curve attacks on (hyper)elliptic curve cryptosystems. Advances in Mathematics of Communications, 2010, 4 (3) : 307-321. doi: 10.3934/amc.2010.4.307

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]