• Previous Article
    Existence and uniqueness of a solution for a class of parabolic equations with two unbounded nonlinearities
  • CPAA Home
  • This Issue
  • Next Article
    Serrin-type blowup criterion for full compressible Navier-Stokes-Maxwell system with vacuum
January  2016, 15(1): 185-196. doi: 10.3934/cpaa.2016.15.185

One Class of Sobolev Type Equations of Higher Order with Additive "White Noise"

1. 

University of Bologna, Department of Mathematics, Piazza di Porta San Donato, 5, Bologna, Italy

2. 

South Ural State University, Dep. of Mathematics, Mechanics and Computer science, Lenin avenue, 76, Chelyabinsk, Russian Federation, Russian Federation

Received  September 2015 Revised  October 2015 Published  December 2015

Sobolev type equation theory has been an object of interest in recent years, with much attention being devoted to deterministic equations and systems. Still, there are also mathematical models containing random perturbation, such as white noise; these models are often used in natural experiments and have recently driven a large amount of research on stochastic differential equations. A new concept of ``white noise", originally constructed for finite dimensional spaces, is extended here to the case of infinite dimensional spaces. The main purpose is to develop stochastic higher-order Sobolev type equation theory and provide some practical applications. The main idea is to construct ``noise" spaces using the Nelson -- Gliklikh derivative. Abstract results are applied to the Boussinesq -- Lòve model with additive ``white noise" within Sobolev type equation theory. Because of their usefulness, we mainly focus on Sobolev type equations with relatively p-bounded operators. We also use well-known methods in the investigation of Sobolev type equations, such as the phase space method, which reduces a singular equation to a regular one, as defined on some subspace of the initial space.
Citation: Angelo Favini, Georgy A. Sviridyuk, Alyona A. Zamyshlyaeva. One Class of Sobolev Type Equations of Higher Order with Additive "White Noise". Communications on Pure and Applied Analysis, 2016, 15 (1) : 185-196. doi: 10.3934/cpaa.2016.15.185
References:
[1]

A. B. Al'shin, M. O. Korpusov and A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, Series in Nonlinear Analysis and Applications, 15, De Gruyter, 2011. doi: 10.1515/9783110255294.

[2]

G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems Not Solvable with Respect to the Highest Order Derivative, N.Y., Basel, Hong Kong, Marcel Dekker, Inc., 2003. doi: 10.1201/9780203911433.

[3]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, N.Y., Basel, Hong Kong, Marcel Dekker, Inc., 1999.

[4]

Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, London, Dordrecht, Heidelberg, N.Y., Springer, 2011. doi: 10.1007/978-0-85729-163-9.

[5]

Yu. E. Gliklikh and E. Yu. Mashkov, Stochastic Leontieff type equations and mean derivatives of stochastic processes, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 6 (2013), 25-39.

[6]

M. Kovács and S. Larsson, Introduction to stochastic partial differential equations, in Proceedings of "New Directions in the Mathematical and Computer Sciences", National Universities Commission, Abuja, Nigeria, October 8-12, 2007 Publications of the ICMCS, 4 (2008), 159-232.

[7]

A. I. Kozhanov, Boundary Problems for Odd Ordered Equations of Mathematical Physics, Novosibirsk, NGU, 1990.

[8]

L. D. Landau and E. M. Lifshits, Theoretical Phisics, VII. Elasticity Theory, Mscow, Nauka, 1987.

[9]

I. V. Melnikova, A. I. Filinkov and M. A. Alshansky, Abstract stochastic equations II. Solutions in spaces of abstract stochastic distributions, Journal of Mathematical Sciences, 116 (2003), 3620-3656. doi: 10.1023/A:1024159908410.

[10]

A. L. Shestakov, A. V. Keller and E. I. Nazarova, Numerical solution of the optimal measurement problem, Automation and Remote Control, 73 (2012), 97-104. doi: 10.1134/S0005117912010079.

[11]

A. L. Shestakov and G. A. Sviridyuk, On a new conception of white noise, Obozrenie Prikladnoy i Promyshlennoy Matematiki, 19 (2012), 287-288.

[12]

A. L. Shestakov and G. A. Sviridyuk, On the measurement of the "white noise", Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 286 (2012), 99-108.

[13]

A. L. Shestakov and G. A. Sviridyuk, Optimal measurement of dynamically distorted signals, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 234 (2011), 70-75.

[14]

A. L. Shestakov, G. A. Sviridyuk and Yu. V. Hudyakov, Dynamic measurement in spaces of "noise", Bulletin of the South Ural State University. Series: Computer Technologies, Automatic Control and Radioelectronics, 13 (2013), 4-11.

[15]

R. E. Showalter, Hilbert Space Methods for Partial Differential Equations, Pitman, London, San Francisco, Melbourne, 1977.

[16]

N. Sidorov, B. Loginov, A. Sinithyn and M. Falaleev, Lyapunov-Shmidt Methods in Nonlinear Analysis and Applications, Dordrecht, Boston, London, Kluwer Academic Publishers, 2002. doi: 10.1007/978-94-017-2122-6.

[17]

G. A. Sviridyuk and T. V. Apetova, The phase spaces of linear dynamic Sobolev type equations, Doklady Akademii Nauk, 330 (1993), 696-699.

[18]

G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Utrecht, Boston, Köln, Tokyo, VSP, 2003. doi: 10.1515/9783110915501.

[19]

G. A. Sviridyuk and N. A. Manakova, The Dynamical Models of Sobolev Type with Showalter - Sidorov Condition and Additive 'Noise', Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7 (2014), 90-103.

[20]

G. A. Sviridyuk and O. V. Vakarina, Linear Sobolev type equations of higher order, Doklady Akademii Nauk, 393 (1998), 308-310.

[21]

G. A. Sviridyuk and A. A. Zamyshlyaeva, The phase spaces of a class of linear higher-order Sobolev type equations, Differential Equations, 42 (2006), 269-278. doi: 10.1134/S0012266106020145.

[22]

G. Uizem, Linear and Nonlinear Waves, Mscow, Mir, 1977.

[23]

S. Wang and G. Chen, Small amplitude solutions of the generalized IMBq equation, Mathematical Analysis and Applications, 274 (2002), 846-866. doi: 10.1016/S0022-247X(02)00401-8.

[24]

S. A. Zagrebina and E. A. Soldatova, The linear Sobolev-type equations with relatively p-bounded operators and additive white noise, The Bulletin of Irkutsk State University. Series "Mathematics", 6 (2013), 20-34.

[25]

A. A. Zamyshlyaeva, The higher-order Sobolev-type models, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7 (2014), 5-28.

[26]

A. A. Zamyshlyaeva, Stochastic incomplete linear Sobolev type high-ordered equations with additive white noise, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 299 (2012), 73-82.

show all references

References:
[1]

A. B. Al'shin, M. O. Korpusov and A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, Series in Nonlinear Analysis and Applications, 15, De Gruyter, 2011. doi: 10.1515/9783110255294.

[2]

G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems Not Solvable with Respect to the Highest Order Derivative, N.Y., Basel, Hong Kong, Marcel Dekker, Inc., 2003. doi: 10.1201/9780203911433.

[3]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, N.Y., Basel, Hong Kong, Marcel Dekker, Inc., 1999.

[4]

Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, London, Dordrecht, Heidelberg, N.Y., Springer, 2011. doi: 10.1007/978-0-85729-163-9.

[5]

Yu. E. Gliklikh and E. Yu. Mashkov, Stochastic Leontieff type equations and mean derivatives of stochastic processes, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 6 (2013), 25-39.

[6]

M. Kovács and S. Larsson, Introduction to stochastic partial differential equations, in Proceedings of "New Directions in the Mathematical and Computer Sciences", National Universities Commission, Abuja, Nigeria, October 8-12, 2007 Publications of the ICMCS, 4 (2008), 159-232.

[7]

A. I. Kozhanov, Boundary Problems for Odd Ordered Equations of Mathematical Physics, Novosibirsk, NGU, 1990.

[8]

L. D. Landau and E. M. Lifshits, Theoretical Phisics, VII. Elasticity Theory, Mscow, Nauka, 1987.

[9]

I. V. Melnikova, A. I. Filinkov and M. A. Alshansky, Abstract stochastic equations II. Solutions in spaces of abstract stochastic distributions, Journal of Mathematical Sciences, 116 (2003), 3620-3656. doi: 10.1023/A:1024159908410.

[10]

A. L. Shestakov, A. V. Keller and E. I. Nazarova, Numerical solution of the optimal measurement problem, Automation and Remote Control, 73 (2012), 97-104. doi: 10.1134/S0005117912010079.

[11]

A. L. Shestakov and G. A. Sviridyuk, On a new conception of white noise, Obozrenie Prikladnoy i Promyshlennoy Matematiki, 19 (2012), 287-288.

[12]

A. L. Shestakov and G. A. Sviridyuk, On the measurement of the "white noise", Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 286 (2012), 99-108.

[13]

A. L. Shestakov and G. A. Sviridyuk, Optimal measurement of dynamically distorted signals, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 234 (2011), 70-75.

[14]

A. L. Shestakov, G. A. Sviridyuk and Yu. V. Hudyakov, Dynamic measurement in spaces of "noise", Bulletin of the South Ural State University. Series: Computer Technologies, Automatic Control and Radioelectronics, 13 (2013), 4-11.

[15]

R. E. Showalter, Hilbert Space Methods for Partial Differential Equations, Pitman, London, San Francisco, Melbourne, 1977.

[16]

N. Sidorov, B. Loginov, A. Sinithyn and M. Falaleev, Lyapunov-Shmidt Methods in Nonlinear Analysis and Applications, Dordrecht, Boston, London, Kluwer Academic Publishers, 2002. doi: 10.1007/978-94-017-2122-6.

[17]

G. A. Sviridyuk and T. V. Apetova, The phase spaces of linear dynamic Sobolev type equations, Doklady Akademii Nauk, 330 (1993), 696-699.

[18]

G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Utrecht, Boston, Köln, Tokyo, VSP, 2003. doi: 10.1515/9783110915501.

[19]

G. A. Sviridyuk and N. A. Manakova, The Dynamical Models of Sobolev Type with Showalter - Sidorov Condition and Additive 'Noise', Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7 (2014), 90-103.

[20]

G. A. Sviridyuk and O. V. Vakarina, Linear Sobolev type equations of higher order, Doklady Akademii Nauk, 393 (1998), 308-310.

[21]

G. A. Sviridyuk and A. A. Zamyshlyaeva, The phase spaces of a class of linear higher-order Sobolev type equations, Differential Equations, 42 (2006), 269-278. doi: 10.1134/S0012266106020145.

[22]

G. Uizem, Linear and Nonlinear Waves, Mscow, Mir, 1977.

[23]

S. Wang and G. Chen, Small amplitude solutions of the generalized IMBq equation, Mathematical Analysis and Applications, 274 (2002), 846-866. doi: 10.1016/S0022-247X(02)00401-8.

[24]

S. A. Zagrebina and E. A. Soldatova, The linear Sobolev-type equations with relatively p-bounded operators and additive white noise, The Bulletin of Irkutsk State University. Series "Mathematics", 6 (2013), 20-34.

[25]

A. A. Zamyshlyaeva, The higher-order Sobolev-type models, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7 (2014), 5-28.

[26]

A. A. Zamyshlyaeva, Stochastic incomplete linear Sobolev type high-ordered equations with additive white noise, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 299 (2012), 73-82.

[1]

Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381

[2]

Arnaud Debussche, Sylvain De Moor, Julien Vovelle. Diffusion limit for the radiative transfer equation perturbed by a Wiener process. Kinetic and Related Models, 2015, 8 (3) : 467-492. doi: 10.3934/krm.2015.8.467

[3]

Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175

[4]

Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295

[5]

Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3651-3657. doi: 10.3934/dcdsb.2020077

[6]

Xinfu Chen, Carey Caginalp, Jianghao Hao, Yajing Zhang. Effects of white noise in multistable dynamics. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1805-1825. doi: 10.3934/dcdsb.2013.18.1805

[7]

Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055

[8]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[9]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Random exponential attractor for stochastic non-autonomous suspension bridge equation with additive white noise. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021318

[10]

Georgios T. Kossioris, Georgios E. Zouraris. Finite element approximations for a linear Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1845-1872. doi: 10.3934/dcdsb.2013.18.1845

[11]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[12]

Alessia E. Kogoj, Ermanno Lanconelli, Giulio Tralli. Wiener-Landis criterion for Kolmogorov-type operators. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2467-2485. doi: 10.3934/dcds.2018102

[13]

Gregorio Díaz, Jesús Ildefonso Díaz. Stochastic energy balance climate models with Legendre weighted diffusion and an additive cylindrical Wiener process forcing. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021165

[14]

Boris Anicet Guimfack, Conrad Bertrand Tabi, Alidou Mohamadou, Timoléon Crépin Kofané. Stochastic dynamics of the FitzHugh-Nagumo neuron model through a modified Van der Pol equation with fractional-order term and Gaussian white noise excitation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2229-2243. doi: 10.3934/dcdss.2020397

[15]

Boris P. Belinskiy, Peter Caithamer. Stochastic stability of some mechanical systems with a multiplicative white noise. Conference Publications, 2003, 2003 (Special) : 91-99. doi: 10.3934/proc.2003.2003.91

[16]

Yuguo Lin, Daqing Jiang. Long-time behaviour of a perturbed SIR model by white noise. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1873-1887. doi: 10.3934/dcdsb.2013.18.1873

[17]

Luis J. Roman, Marcus Sarkis. Stochastic Galerkin method for elliptic spdes: A white noise approach. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 941-955. doi: 10.3934/dcdsb.2006.6.941

[18]

Boris P. Belinskiy, Peter Caithamer. Energy of an elastic mechanical system driven by Gaussian noise white in time. Conference Publications, 2001, 2001 (Special) : 39-49. doi: 10.3934/proc.2001.2001.39

[19]

Guanggan Chen, Qin Li, Yunyun Wei. Approximate dynamics of a class of stochastic wave equations with white noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 73-101. doi: 10.3934/dcdsb.2021033

[20]

Massimiliano Tamborrino. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences & Engineering, 2016, 13 (3) : 613-629. doi: 10.3934/mbe.2016011

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (89)
  • HTML views (0)
  • Cited by (12)

[Back to Top]