-
Previous Article
Existence and uniqueness of a solution for a class of parabolic equations with two unbounded nonlinearities
- CPAA Home
- This Issue
-
Next Article
Serrin-type blowup criterion for full compressible Navier-Stokes-Maxwell system with vacuum
One Class of Sobolev Type Equations of Higher Order with Additive "White Noise"
1. | University of Bologna, Department of Mathematics, Piazza di Porta San Donato, 5, Bologna, Italy |
2. | South Ural State University, Dep. of Mathematics, Mechanics and Computer science, Lenin avenue, 76, Chelyabinsk, Russian Federation, Russian Federation |
References:
[1] |
A. B. Al'shin, M. O. Korpusov and A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, Series in Nonlinear Analysis and Applications, 15, De Gruyter, 2011.
doi: 10.1515/9783110255294. |
[2] |
G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems Not Solvable with Respect to the Highest Order Derivative, N.Y., Basel, Hong Kong, Marcel Dekker, Inc., 2003.
doi: 10.1201/9780203911433. |
[3] |
A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, N.Y., Basel, Hong Kong, Marcel Dekker, Inc., 1999. |
[4] |
Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, London, Dordrecht, Heidelberg, N.Y., Springer, 2011.
doi: 10.1007/978-0-85729-163-9. |
[5] |
Yu. E. Gliklikh and E. Yu. Mashkov, Stochastic Leontieff type equations and mean derivatives of stochastic processes, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 6 (2013), 25-39. |
[6] |
M. Kovács and S. Larsson, Introduction to stochastic partial differential equations, in Proceedings of "New Directions in the Mathematical and Computer Sciences", National Universities Commission, Abuja, Nigeria, October 8-12, 2007 Publications of the ICMCS, 4 (2008), 159-232. |
[7] |
A. I. Kozhanov, Boundary Problems for Odd Ordered Equations of Mathematical Physics, Novosibirsk, NGU, 1990. |
[8] |
L. D. Landau and E. M. Lifshits, Theoretical Phisics, VII. Elasticity Theory, Mscow, Nauka, 1987. |
[9] |
I. V. Melnikova, A. I. Filinkov and M. A. Alshansky, Abstract stochastic equations II. Solutions in spaces of abstract stochastic distributions, Journal of Mathematical Sciences, 116 (2003), 3620-3656.
doi: 10.1023/A:1024159908410. |
[10] |
A. L. Shestakov, A. V. Keller and E. I. Nazarova, Numerical solution of the optimal measurement problem, Automation and Remote Control, 73 (2012), 97-104.
doi: 10.1134/S0005117912010079. |
[11] |
A. L. Shestakov and G. A. Sviridyuk, On a new conception of white noise, Obozrenie Prikladnoy i Promyshlennoy Matematiki, 19 (2012), 287-288. |
[12] |
A. L. Shestakov and G. A. Sviridyuk, On the measurement of the "white noise", Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 286 (2012), 99-108. |
[13] |
A. L. Shestakov and G. A. Sviridyuk, Optimal measurement of dynamically distorted signals, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 234 (2011), 70-75. |
[14] |
A. L. Shestakov, G. A. Sviridyuk and Yu. V. Hudyakov, Dynamic measurement in spaces of "noise", Bulletin of the South Ural State University. Series: Computer Technologies, Automatic Control and Radioelectronics, 13 (2013), 4-11. |
[15] |
R. E. Showalter, Hilbert Space Methods for Partial Differential Equations, Pitman, London, San Francisco, Melbourne, 1977. |
[16] |
N. Sidorov, B. Loginov, A. Sinithyn and M. Falaleev, Lyapunov-Shmidt Methods in Nonlinear Analysis and Applications, Dordrecht, Boston, London, Kluwer Academic Publishers, 2002.
doi: 10.1007/978-94-017-2122-6. |
[17] |
G. A. Sviridyuk and T. V. Apetova, The phase spaces of linear dynamic Sobolev type equations, Doklady Akademii Nauk, 330 (1993), 696-699. |
[18] |
G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Utrecht, Boston, Köln, Tokyo, VSP, 2003.
doi: 10.1515/9783110915501. |
[19] |
G. A. Sviridyuk and N. A. Manakova, The Dynamical Models of Sobolev Type with Showalter - Sidorov Condition and Additive 'Noise', Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7 (2014), 90-103. |
[20] |
G. A. Sviridyuk and O. V. Vakarina, Linear Sobolev type equations of higher order, Doklady Akademii Nauk, 393 (1998), 308-310. |
[21] |
G. A. Sviridyuk and A. A. Zamyshlyaeva, The phase spaces of a class of linear higher-order Sobolev type equations, Differential Equations, 42 (2006), 269-278.
doi: 10.1134/S0012266106020145. |
[22] | |
[23] |
S. Wang and G. Chen, Small amplitude solutions of the generalized IMBq equation, Mathematical Analysis and Applications, 274 (2002), 846-866.
doi: 10.1016/S0022-247X(02)00401-8. |
[24] |
S. A. Zagrebina and E. A. Soldatova, The linear Sobolev-type equations with relatively p-bounded operators and additive white noise, The Bulletin of Irkutsk State University. Series "Mathematics", 6 (2013), 20-34. |
[25] |
A. A. Zamyshlyaeva, The higher-order Sobolev-type models, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7 (2014), 5-28. |
[26] |
A. A. Zamyshlyaeva, Stochastic incomplete linear Sobolev type high-ordered equations with additive white noise, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 299 (2012), 73-82. |
show all references
References:
[1] |
A. B. Al'shin, M. O. Korpusov and A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, Series in Nonlinear Analysis and Applications, 15, De Gruyter, 2011.
doi: 10.1515/9783110255294. |
[2] |
G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems Not Solvable with Respect to the Highest Order Derivative, N.Y., Basel, Hong Kong, Marcel Dekker, Inc., 2003.
doi: 10.1201/9780203911433. |
[3] |
A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, N.Y., Basel, Hong Kong, Marcel Dekker, Inc., 1999. |
[4] |
Yu. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, London, Dordrecht, Heidelberg, N.Y., Springer, 2011.
doi: 10.1007/978-0-85729-163-9. |
[5] |
Yu. E. Gliklikh and E. Yu. Mashkov, Stochastic Leontieff type equations and mean derivatives of stochastic processes, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 6 (2013), 25-39. |
[6] |
M. Kovács and S. Larsson, Introduction to stochastic partial differential equations, in Proceedings of "New Directions in the Mathematical and Computer Sciences", National Universities Commission, Abuja, Nigeria, October 8-12, 2007 Publications of the ICMCS, 4 (2008), 159-232. |
[7] |
A. I. Kozhanov, Boundary Problems for Odd Ordered Equations of Mathematical Physics, Novosibirsk, NGU, 1990. |
[8] |
L. D. Landau and E. M. Lifshits, Theoretical Phisics, VII. Elasticity Theory, Mscow, Nauka, 1987. |
[9] |
I. V. Melnikova, A. I. Filinkov and M. A. Alshansky, Abstract stochastic equations II. Solutions in spaces of abstract stochastic distributions, Journal of Mathematical Sciences, 116 (2003), 3620-3656.
doi: 10.1023/A:1024159908410. |
[10] |
A. L. Shestakov, A. V. Keller and E. I. Nazarova, Numerical solution of the optimal measurement problem, Automation and Remote Control, 73 (2012), 97-104.
doi: 10.1134/S0005117912010079. |
[11] |
A. L. Shestakov and G. A. Sviridyuk, On a new conception of white noise, Obozrenie Prikladnoy i Promyshlennoy Matematiki, 19 (2012), 287-288. |
[12] |
A. L. Shestakov and G. A. Sviridyuk, On the measurement of the "white noise", Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 286 (2012), 99-108. |
[13] |
A. L. Shestakov and G. A. Sviridyuk, Optimal measurement of dynamically distorted signals, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 234 (2011), 70-75. |
[14] |
A. L. Shestakov, G. A. Sviridyuk and Yu. V. Hudyakov, Dynamic measurement in spaces of "noise", Bulletin of the South Ural State University. Series: Computer Technologies, Automatic Control and Radioelectronics, 13 (2013), 4-11. |
[15] |
R. E. Showalter, Hilbert Space Methods for Partial Differential Equations, Pitman, London, San Francisco, Melbourne, 1977. |
[16] |
N. Sidorov, B. Loginov, A. Sinithyn and M. Falaleev, Lyapunov-Shmidt Methods in Nonlinear Analysis and Applications, Dordrecht, Boston, London, Kluwer Academic Publishers, 2002.
doi: 10.1007/978-94-017-2122-6. |
[17] |
G. A. Sviridyuk and T. V. Apetova, The phase spaces of linear dynamic Sobolev type equations, Doklady Akademii Nauk, 330 (1993), 696-699. |
[18] |
G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Utrecht, Boston, Köln, Tokyo, VSP, 2003.
doi: 10.1515/9783110915501. |
[19] |
G. A. Sviridyuk and N. A. Manakova, The Dynamical Models of Sobolev Type with Showalter - Sidorov Condition and Additive 'Noise', Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7 (2014), 90-103. |
[20] |
G. A. Sviridyuk and O. V. Vakarina, Linear Sobolev type equations of higher order, Doklady Akademii Nauk, 393 (1998), 308-310. |
[21] |
G. A. Sviridyuk and A. A. Zamyshlyaeva, The phase spaces of a class of linear higher-order Sobolev type equations, Differential Equations, 42 (2006), 269-278.
doi: 10.1134/S0012266106020145. |
[22] | |
[23] |
S. Wang and G. Chen, Small amplitude solutions of the generalized IMBq equation, Mathematical Analysis and Applications, 274 (2002), 846-866.
doi: 10.1016/S0022-247X(02)00401-8. |
[24] |
S. A. Zagrebina and E. A. Soldatova, The linear Sobolev-type equations with relatively p-bounded operators and additive white noise, The Bulletin of Irkutsk State University. Series "Mathematics", 6 (2013), 20-34. |
[25] |
A. A. Zamyshlyaeva, The higher-order Sobolev-type models, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7 (2014), 5-28. |
[26] |
A. A. Zamyshlyaeva, Stochastic incomplete linear Sobolev type high-ordered equations with additive white noise, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 299 (2012), 73-82. |
[1] |
Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381 |
[2] |
Arnaud Debussche, Sylvain De Moor, Julien Vovelle. Diffusion limit for the radiative transfer equation perturbed by a Wiener process. Kinetic and Related Models, 2015, 8 (3) : 467-492. doi: 10.3934/krm.2015.8.467 |
[3] |
Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175 |
[4] |
Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295 |
[5] |
Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3651-3657. doi: 10.3934/dcdsb.2020077 |
[6] |
Xinfu Chen, Carey Caginalp, Jianghao Hao, Yajing Zhang. Effects of white noise in multistable dynamics. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1805-1825. doi: 10.3934/dcdsb.2013.18.1805 |
[7] |
Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055 |
[8] |
Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887 |
[9] |
Ling Xu, Jianhua Huang, Qiaozhen Ma. Random exponential attractor for stochastic non-autonomous suspension bridge equation with additive white noise. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021318 |
[10] |
Georgios T. Kossioris, Georgios E. Zouraris. Finite element approximations for a linear Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1845-1872. doi: 10.3934/dcdsb.2013.18.1845 |
[11] |
Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210 |
[12] |
Alessia E. Kogoj, Ermanno Lanconelli, Giulio Tralli. Wiener-Landis criterion for Kolmogorov-type operators. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2467-2485. doi: 10.3934/dcds.2018102 |
[13] |
Gregorio Díaz, Jesús Ildefonso Díaz. Stochastic energy balance climate models with Legendre weighted diffusion and an additive cylindrical Wiener process forcing. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021165 |
[14] |
Boris Anicet Guimfack, Conrad Bertrand Tabi, Alidou Mohamadou, Timoléon Crépin Kofané. Stochastic dynamics of the FitzHugh-Nagumo neuron model through a modified Van der Pol equation with fractional-order term and Gaussian white noise excitation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2229-2243. doi: 10.3934/dcdss.2020397 |
[15] |
Boris P. Belinskiy, Peter Caithamer. Stochastic stability of some mechanical systems with a multiplicative white noise. Conference Publications, 2003, 2003 (Special) : 91-99. doi: 10.3934/proc.2003.2003.91 |
[16] |
Yuguo Lin, Daqing Jiang. Long-time behaviour of a perturbed SIR model by white noise. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1873-1887. doi: 10.3934/dcdsb.2013.18.1873 |
[17] |
Luis J. Roman, Marcus Sarkis. Stochastic Galerkin method for elliptic spdes: A white noise approach. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 941-955. doi: 10.3934/dcdsb.2006.6.941 |
[18] |
Boris P. Belinskiy, Peter Caithamer. Energy of an elastic mechanical system driven by Gaussian noise white in time. Conference Publications, 2001, 2001 (Special) : 39-49. doi: 10.3934/proc.2001.2001.39 |
[19] |
Guanggan Chen, Qin Li, Yunyun Wei. Approximate dynamics of a class of stochastic wave equations with white noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 73-101. doi: 10.3934/dcdsb.2021033 |
[20] |
Massimiliano Tamborrino. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences & Engineering, 2016, 13 (3) : 613-629. doi: 10.3934/mbe.2016011 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]