• Previous Article
    Blow-up scaling and global behaviour of solutions of the bi-Laplace equation via pencil operators
  • CPAA Home
  • This Issue
  • Next Article
    On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior
January  2016, 15(1): 243-260. doi: 10.3934/cpaa.2016.15.243

Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species

1. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

2. 

Department of Applied Mathematics, Dalian University of Technology, Dalian 116024

Received  May 2015 Revised  September 2015 Published  December 2015

This paper deals with two-species quasilinear parabolic-parabolic Keller-Segel system $ u_{it}=\nabla\cdot(\phi_i(u_i)\nabla u_i)-\nabla\cdot(\psi_i(u_i)\nabla v)$, $i=1,2$, $v_t=\Delta v-v+u_1+u_2$ in $\Omega\times (0,T)$, subject to the homogeneous Neumann boundary conditions, with bounded domain $\Omega\subset\mathbb{R}^n$, $n\geq2$. We prove that if $\frac{\psi_i(u_i)}{\phi_i(u_i)}\leq C_iu_i^{\alpha_i}$ for $u_i>1$ with $0<\alpha_i<\frac{2}{n}$ and $C_i>0$, $i=1,2$, then the solutions are globally bounded, while if $\frac{\psi_1(u_1)}{\phi_1(u_1)}\geq C_1u_1^{\alpha_1}$ for $u_1>1$ with $\Omega=B_R$, $\alpha_1>\frac{2}{n}$, then for any radial $u_{20}\in C^0(\overline{\Omega})$ and $m_1>0$, there exists positive radial initial data $u_{10}$ with $\int_\Omega u_{10}=m_1$ such that the solution blows up in a finite time $T_{\max}$ in the sense $\lim_{{t\rightarrow T_{\max}}} \|u_1(\cdot,t)+u_2(\cdot,t)\|_{L^{\infty}(\Omega)}=\infty$. In particular, if $\alpha_1>\frac{2}{n}$ with $0<\alpha_2<\frac{2}{n}$, the finite time blow-up for the species $u_1$ is obtained under suitable initial data, a new phenomenon unknown yet even for the semilinear Keller-Segel system of two species.
Citation: Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243
References:
[1]

X. R. Cao, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source,, \emph{J. Math. Anal. Appl.}, 412 (2014), 181.  doi: 10.1016/j.jmaa.2013.10.061.  Google Scholar

[2]

T. Cieslak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, \emph{J. Differential Equations}, 252 (2012), 5832.  doi: 10.1016/j.jde.2012.01.045.  Google Scholar

[3]

T. Cieslak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2,, \emph{Acta Appl. Math.}, 129 (2014), 135.  doi: 10.1007/s10440-013-9832-5.  Google Scholar

[4]

T. Cieslak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel and applications to volume filling models,, \emph{J. Differential Equations}, 258 (2015), 2080.  doi: 10.1016/j.jde.2014.12.004.  Google Scholar

[5]

T. Cieslak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis,, \emph{Nonlinearity}, 21 (2008), 1057.  doi: 10.1088/0951-7715/21/5/009.  Google Scholar

[6]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, \emph{Ann. Scuola Normale Superiore}, 24 (1997), 633.   Google Scholar

[7]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I,, \emph{Jber. DMV}, 105 (): 103.   Google Scholar

[8]

D. Horstmann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species,, \emph{J. Nonlinear Sci.}, 21 (2011), 231.  doi: 10.1007/s00332-010-9082-x.  Google Scholar

[9]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, \emph{J. Differential Equations}, 215 (2005), 52.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[10]

S. Ishida, K. Seki and T, Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, \emph{J. Differential Equations}, 256 (2014), 2993.  doi: 10.1016/j.jde.2014.01.028.  Google Scholar

[11]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, \emph{Trans. Amer. Math. Soc.}, 329 (1992), 819.  doi: 10.2307/2153966.  Google Scholar

[12]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type,, AMS, (1968).   Google Scholar

[13]

Y. Li and Y. X. Li, Finite-time blow-up in higher dimensional fully-parabolic chemotaxis system for two species,, \emph{Nonlinear Anal.}, 109 (2014), 72.  doi: 10.1016/j.na.2014.05.021.  Google Scholar

[14]

K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement,, \emph{Can. Appl. Math. Q.}, 10 (2002), 501.   Google Scholar

[15]

Y. S. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, \emph{J. Differential Equations}, 252 (2012), 692.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[16]

M. Winkler, Does a "volume-filling effect" always prevent chemotactic collapse?, \emph{Math. Meth. Appl. Sci.}, 33 (2010), 12.  doi: 10.1002/mma.1146.  Google Scholar

[17]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, \emph{J. Differential Equations}, 248 (2010), 2889.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[18]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, \emph{J. Math. Pures Appl.}, 100 (2013), 748.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[19]

Q. S. Zhang and Y. X. Li, Global existence and asymptotic properties of the solution to a two-species chemotaxis system,, \emph{J. Math. Anal. Appl.}, 418 (2014), 47.  doi: 10.1016/j.jmaa.2014.03.084.  Google Scholar

show all references

References:
[1]

X. R. Cao, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source,, \emph{J. Math. Anal. Appl.}, 412 (2014), 181.  doi: 10.1016/j.jmaa.2013.10.061.  Google Scholar

[2]

T. Cieslak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, \emph{J. Differential Equations}, 252 (2012), 5832.  doi: 10.1016/j.jde.2012.01.045.  Google Scholar

[3]

T. Cieslak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2,, \emph{Acta Appl. Math.}, 129 (2014), 135.  doi: 10.1007/s10440-013-9832-5.  Google Scholar

[4]

T. Cieslak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel and applications to volume filling models,, \emph{J. Differential Equations}, 258 (2015), 2080.  doi: 10.1016/j.jde.2014.12.004.  Google Scholar

[5]

T. Cieslak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis,, \emph{Nonlinearity}, 21 (2008), 1057.  doi: 10.1088/0951-7715/21/5/009.  Google Scholar

[6]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, \emph{Ann. Scuola Normale Superiore}, 24 (1997), 633.   Google Scholar

[7]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I,, \emph{Jber. DMV}, 105 (): 103.   Google Scholar

[8]

D. Horstmann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species,, \emph{J. Nonlinear Sci.}, 21 (2011), 231.  doi: 10.1007/s00332-010-9082-x.  Google Scholar

[9]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, \emph{J. Differential Equations}, 215 (2005), 52.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[10]

S. Ishida, K. Seki and T, Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, \emph{J. Differential Equations}, 256 (2014), 2993.  doi: 10.1016/j.jde.2014.01.028.  Google Scholar

[11]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, \emph{Trans. Amer. Math. Soc.}, 329 (1992), 819.  doi: 10.2307/2153966.  Google Scholar

[12]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type,, AMS, (1968).   Google Scholar

[13]

Y. Li and Y. X. Li, Finite-time blow-up in higher dimensional fully-parabolic chemotaxis system for two species,, \emph{Nonlinear Anal.}, 109 (2014), 72.  doi: 10.1016/j.na.2014.05.021.  Google Scholar

[14]

K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement,, \emph{Can. Appl. Math. Q.}, 10 (2002), 501.   Google Scholar

[15]

Y. S. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, \emph{J. Differential Equations}, 252 (2012), 692.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[16]

M. Winkler, Does a "volume-filling effect" always prevent chemotactic collapse?, \emph{Math. Meth. Appl. Sci.}, 33 (2010), 12.  doi: 10.1002/mma.1146.  Google Scholar

[17]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, \emph{J. Differential Equations}, 248 (2010), 2889.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[18]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, \emph{J. Math. Pures Appl.}, 100 (2013), 748.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[19]

Q. S. Zhang and Y. X. Li, Global existence and asymptotic properties of the solution to a two-species chemotaxis system,, \emph{J. Math. Anal. Appl.}, 418 (2014), 47.  doi: 10.1016/j.jmaa.2014.03.084.  Google Scholar

[1]

Youshan Tao, Michael Winkler. Boundedness vs.blow-up in a two-species chemotaxis system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3165-3183. doi: 10.3934/dcdsb.2015.20.3165

[2]

Xie Li, Yilong Wang. Boundedness in a two-species chemotaxis parabolic system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2717-2729. doi: 10.3934/dcdsb.2017132

[3]

Liangchen Wang, Jing Zhang, Chunlai Mu, Xuegang Hu. Boundedness and stabilization in a two-species chemotaxis system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 191-221. doi: 10.3934/dcdsb.2019178

[4]

Yan Li. Emergence of large densities and simultaneous blow-up in a two-species chemotaxis system with competitive kinetics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5461-5480. doi: 10.3934/dcdsb.2019066

[5]

Jean Dolbeault, Christian Schmeiser. The two-dimensional Keller-Segel model after blow-up. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 109-121. doi: 10.3934/dcds.2009.25.109

[6]

Monica Marras, Stella Vernier Piro, Giuseppe Viglialoro. Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Conference Publications, 2015, 2015 (special) : 809-816. doi: 10.3934/proc.2015.0809

[7]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 233-255. doi: 10.3934/dcdss.2020013

[8]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure & Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

[9]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[10]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[11]

Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179

[12]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[13]

Huanhuan Qiu, Shangjiang Guo. Global existence and stability in a two-species chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1569-1587. doi: 10.3934/dcdsb.2018220

[14]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[15]

Vincent Calvez, Thomas O. Gallouët. Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1175-1208. doi: 10.3934/dcds.2016.36.1175

[16]

Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029

[17]

Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464

[18]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[19]

Sachiko Ishida, Tomomi Yokota. Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 211-232. doi: 10.3934/dcdss.2020012

[20]

Masaaki Mizukami. Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2301-2319. doi: 10.3934/dcdsb.2017097

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]